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FOREWORD 
The ACS S Y M P O S I U M SERIES was founded in 1974 to provide a 
medium for publishing symposia quickly in book form. The 
format of the Series parallels that of the continuing ADVANCES 
IN CHEMISTRY SERIES except that, in order to save time, the 
papers are not typese
by the authors in camera-read
the supervision of the Editors with the assistance of the Series 
Advisory Board and are selected to maintain the integrity of the 
symposia; however, verbatim reproductions of previously pub­
lished papers are not accepted. Both reviews and reports of 
research are acceptable, because symposia may embrace both 
types of presentation. 
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PREFACE 

ENVIRONMENTAL APPLICATIONS OF C H E M O M E T R I C S are of interest 
because of the concern about the effects of chemicals on humans. The 
symposium upon which this book is based served as an important milestone 
in a process we, the editors, initiated in 1982. As members of the 
Environmental Protection Agency's Office of Toxic Substances (OTS), we 
have responsibilities for the acquisition and analysis of human and 
environmental exposure dat
Act. OTS exposure studies invariably are complex and range from 
evaluating human body burden data (polychlorinated biphenyls in adipose 
tissue, for example) to documenting airborne asbestos levels in schools. 

The proper conduct of complex exposure studies requires that the 
quality of the data be well defined and the statistical basis be sufficient to 
support rule making if necessary. These requirements, from study design 
through chemical analysis to data reduction and interpretation, focused our 
attention on the application of chemometric techniques to environmental 
problems. 

In the fall of 1982, OTS and the Agency's Office of Research and 
Development's (ORD) Environmental Monitoring Systems Laboratory 
(Research Triangle Park, NC) hosted a 2-day workshop for researchers 
active in chemometrics. The participants represented various agency 
program offices and ORD laboratories, as well as researchers from the 
National Fisheries and Wildlife Service, Columbia, MO; University of 
Illinois, Chicago; and Infometrix, Seattle, WA. It was evident that isolated 
attempts were in progress to apply chemometric techniques to complex 
environmental problems. What was lacking was a coherent chemometrics 
program with well-defined objectives. 

The advent of analytical techniques capable of providing data on a large 
number of analytes in a given specimen had necessitated that better 
techniques be employed in the assessment of data quality and for data 
interpretation. In 1983 and 1984, several volumes were published on the 
application of pattern recognition, cluster analysis, and factor analysis to 
analytical chemistry. These treatises provided the theoretical basis by which 
to analyze these environmentally related data. The coupling of multivariate 
approaches to environmental problems was yet to be accomplished. 

This multivariate data analysis challenge is aggressively being met by a 
number of researchers. The result is a vibrant and growing literature filled 
with software acronyms such as A R T H U R , si M C A , CHEOPS, CLEOPATRA, 

IX 
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EIN*SIGHT, and others. All of these programs are specifically directed toward 
the multivariate analysis of analytical chemical data both in assessing data 
quality (quality control and quality assurance) and in interpreting data to 
provide insight into the complex system under investigation. 

The fall of 1983 also saw the North Atlantic Treaty Organization host 
an Advanced Studies Institute in Cosenza, Italy, entitled "Chemometrics: 
Mathematics and Statistics in Chemistry." One hundred scientists—a most 
unusual collection of chemists, engineers, and statisticians from academia, 
industry, and government—representing a dozen countries assembled to 
discuss the role of sophisticated multivariate statistics in the daily routine of 
an analytical chemistry laboratory. 

With this backdrop, we approached the ACS Division of Environmen­
tal Chemistry with the request t  symposiu  th  applicatio f 
chemometrics to environmenta

This volume represents a majority of the presentations made at the 
symposium. The broad range of topics can be seen in the table of contents. 
Thought-provoking discussions at the symposium revealed that significant 
progress has been made in the application of chemometrics to environmental 
problems. 

D I S C L A I M E R 

This book was edited by Joseph J. Breen and Philip E. Robinson in their 
private capacity. No official support or endorsement by the U .S . Environ­
mental Protection Agency is intended or should be inferred. 

JOSEPH J. B R E E N 
PHILIP E. ROBINSON 
Office of Toxic Substances 
U.S. Environmental Protection Agency 
Washington, DC 20460 
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1 
Soft Independent Method of Class Analogy 
Use in Characterizing Complex Mixtures and 
Environmental Residues of Polychlorinated Biphenyls 

D. L. Stalling1, T. R. Schwartz1, W. J. Dunn III2, and J. D. Petty1 

1Columbia National Fisheries Research Laboratory, U.S. Fish and Wildlife Service, 
Columbia, MO 65201 

2Health Sciences Research Center, Department of Medicinal Chemistry and 
Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612 

Pattern recognition studies on complex data 
from capillary gas chromatographic analyses 
were conducted with a series of micro­
computer programs based on principal 
components (SIMCA-3B). Principal components 
sample score plots provide a means to assess 
sample similarity. The behavior of analytes 
in samples can be evaluated from variable 
loading plots derived from principal 
components calculations. A complex data set 
was derived from isomer specific 
polychlorinated biphenyl (PCBS) analyses of 
samples from laboratory and field studies. 
The application of chemometrics to these 
problems includes three segments: 
analytical quality control; method and data 
base development; and modeling Aroclor 
composition and PCB residues in bird eggs. 

Chemometrics, as defined by Kowalski (1) , includes the 
application of multivariate s t a t i s t i c a l methods to the 
study of chemical problems. SIMCA (Soft Independent Method 
of Class Analogy) and other multivariate s t a t i s t i c a l 
methods have been used as tools i n chemometric 
investigations. SIMCA, based on p r i n c i p a l components, i s 
a multivariate chemometric method that has been applied 
to a variety of chemical problems of varying complexity. 
The SIMCA-3Β program i s suitable for use with 8- and 16-
b i t microcomputers. 

Four levels of pattern recognition have been defined 
by Albano (2) . Levels I and II are most frequently used 
to determine the s i m i l a r i t y of objects, or to characterize 
clusters of samples and to c l a s s i f y unknown objects. 
Level III takes advantage of the reduction of data 
dimensions resulting from SIMCA and seeks to establish a 
correlation of sample scores with independent variables 

0097-6156/ 85/ 0292-0001 $06.00/ 0 
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2 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

such as chemical functions or variables, spectroscopic 
data or chemical t o x i c i t y . This approach i s often used i n 
quantitative structure-activity relationships (3-5). 
Level IV i s most frequently applied to^ complex 
spectroscopic c a l i b r a t i o n problems and i n situations where 
composition prediction or estimation i s to be made from 
spectroscopic data. 

The SIMCA approach can be applied i n a l l of the four 
levels of pattern recognition. We focus on i t s use to 
describe complex mixtures graphically, and on i t s u t i l i t y 
i n quality control. This approach was selected for the 
tasks of developing a quality control program and 
evaluating s i m i l a r i t i e s i n samples of various types. 
P r i n c i p a l components analysis has proven to be well suited 
for evaluating data from c a p i l l a r y gas chromatographic 
(GC) analyses (6-8). 

A n a l y t i c a l quality control (QC) e f f o r t s usually are 
at l e v e l I or I I . S t a t i s t i c a
laboratory data i s ofte
dependent variables i s greater than the number of samples. 
In evaluating quality control, the analyst seeks to 
establish that replicate analyses made on reference 
material of known composition do not contain excessive 
systematic or random errors of measurement. In addition, 
when such problems are detected, i t i s helpful i f remedial 
measures can be inferred from the QC data. 

Our progress i n the application of chemometrics to 
c a p i l l a r y GC data was advanced by the development of a 
laboratory chromatography data base (9). This development 
followed from our decision to use c a p i l l a r y GC i n most of 
our laboratory analyses for environmental contaminants. A 
data base was considered necessary because large amounts 
of data were being generated from the analysis of 
laboratory and f i e l d studies on complex mixtures of 
organochlorine contaminants. A data base i s an important, 
but not essential, factor i n using pattern recognition for 
quality control. 

The most advanced application of pattern recognition 
(Level IV) offers the p o s s i b i l i t y of predicting 
independent variables by using latent variables derived 
from examining t r a i n i n g sets of dependent and independent 
variables (10). The application of p a r t i a l least squares 
i n the prediction of the composition of mixtures of 
Aroclors was previously explored (6) by using the program, 
PLS-2 provided by the SIMCA-3Β programs (11-12). 

The f i r s t results from the use of PLS were reported 
by Dunn et a l (6) who estimated the composition of PCB 
contaminated waste o i l i n terms of Aroclor mixtures. 
S t a l l i n g et a l (13), who reported on the characterization 
of PCB mixtures and the use of three-dimensional plots 
derived from p r i n c i p a l components, demonstrated that the 
f r a c t i o n a l composition of TCDD and other PCDD residues 
were related to t h e i r geographical origins. These two 
reports (6,13) described the application of an advanced 
chemometric t o o l i n residue studies and i l l u s t r a t e d the 
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1. STALLING ET A L . Laboratory Mixtures and Environmental PCBs 3 

use of pattern recognition to extract quantitative 
information about sample s i m i l a r i t y . 

In our present investigations, we encountered a 
pressing need for an objective, s t a t i s t i c a l l y based way of 
evaluating concentrations of as many as 105 individual PCB 
isomers i n each sample analyzed by c a p i l l a r y GC. We 
summarize here some of the experience obtained i n our 
laboratories from the use of SIMCA to characterize Aroclor 
mixtures and environmental PCB residues i n a series of 
b i r d eggs. 

METHODS 

Sampling. Eggs of Forster's tern (Sterna f o r s t e r i ) were 
collected i n 1983 from nests i n two colonies i n 
Wisconsin—one on Lake Poygan and the other on Oconto 
Marsh, Green Bay—as part of a study on impaired 
reproduction. Lake Poyga
whereas Green Bay i
River with many i n d u s t r i a l c h e m i c a l s — p a r t i c u l a r l y PCBs 
and chlorophenols, which are known sources of PCDFs and 
PCDDs. Reproductive success has declined and the incidence 
of deformed young has increased i n the Green Bay colony 
(14). 

Analysis of PCBs. PCB residues i n extracts of egg samples 
were enriched by using a combination of gel permeation 
chromatography on BioBeads S-X3 and 1:1 (v/v) 
cyclohexane:methylene chloride. Adsorption column 
chromatography on s i l i c i c acid was used to separate PCBs 
from other co-extractives and contaminants (15). 

The PCB congeners were separated by using a glass 
c a p i l l a r y chromatographic column (30 Μ χ .25 mm i.d.) 
coated with C 8 7-hydrocarbon stationary phase (Quadrex 
Corp., New Haven, CT 06525); a 60-cm uncoated fused 
s i l i c a retention gap connected the injector to the 
an a l y t i c a l column and a 15 cm uncoated fused s i l i c a 
column connected an a l y t i c a l column to the detector. The 
data sampling and gas chromatography program was 
controlled by a Varian Autosampler Model 8000, which also 
delivered a calibrated amount of sample to the GC 
in j e c t i o n port. Chromatographic conditions were similar 
for a l l of the analyses: i n i t i a l temperature, 80 °C, 
programmed at 3 °C/min to a f i n a l temperature of 265 °C; 
detector temperature, 320 °C; and injector temperature 
(direct inject) 220 °C. 

An IBM CS9000 microcomputer was interfaced with the 
GC which acquired data generated by the electron capture 
detector. In processing the data, we used the CS9000 and 
a software package designed for laboratory data c o l l e c t i o n 
(Capillary Applications Program [CAP], IBM Instrument 
d i v i s i o n , Danbury, CT 06810). We organized the processed 
peak data, using a basic program, into a series of f i l e s 
on hard disk media and transferred these f i l e s o f f - l i n e to 
a D i g i t a l Equipment Corp. (DEC) PDP-11/34 minicomputer. We 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



4 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

then organized the data into tree-structured disk f i l e s , 
using our specialized laboratory data base management 
computer programs written i n DSM-11 (Di g i t a l Standard 
MUMPS) for the PDP-11 family of computers. 

We separated 105 constituents and achieved 
c a l i b r a t i o n by using a 1:1:1:1 (w/w/w/w) mixture of 
Aroclors 1242, 1248, 1254 and 1260. The l a s t two d i g i t s of 
the Aroclor number designates the percentage chlorine i n 
the Aroclor. A chromatogram of t h i s mixed Aroclor 
standard i s shown i n Figure 1. The method of peak 
i d e n t i f i c a t i o n was a retention index system u t i l i z i n g n-
al k y l trichloroacetates (16). Molar response factors were 
determined from a flame ionization detector by using the 
computer-based calculation methods described by Schwartz 
et aTj. (16) . 

After we determined the concentrations of individual 
isomers, we retrieved the data from the MUMPs based 
laboratory data base
(IBM Corporation, Boc
l i n k , using the program Cyber (Department of Ling u i s t i c s , 
University of I l l i n o i s at Champaign-Urbana, Urbana, IL 
61820). In performing p r i n c i p a l components analyses, we 
used SIMCA-3Β for MS-DOS based microcomputers (Principal 
Data Components, 2505 Shepard Blvd., Columbia, MO 65201). 

A series of Aroclors and known Aroclor mixtures were 
analyzed by these techniques to provide a tr a i n i n g data 
set f or SIMCA-3B. These standards included replicate 
analyses, a 1:1 (w/w) mixture of each Aroclor i n 
combination with one other Aroclor, and a 1:1:1:1 mixture 
of each Aroclor (Table I). 

P r i n c i p a l Components Analysis 

We examined the data by calculating p r i n c i p a l components 
sample scores (Thetas) and variable loading terms (Betas), 
using the program CPRIN from the SIMCA-3Β programs. After 
calculating two or three p r i n c i p a l components for a class 
model, one can prepare a plot of sample s i m i l a r i t y , by 
using the sample scores (Theta-1 vs Theta-2) , as well as 
variable loadings (Beta-1 vs Beta-2). Sample s i m i l a r i t y 
was determined by calculating sample scores (θ-values, 
Equation [1]). 

X i k = Xi + 

a=l 

eka*Bai + E i k [1] 

The likeness of samples within the class can be 
assessed by the proximity of samples to each other i n 
plots derived from p r i n c i p a l components models. The 
s t a t i s t i c a l technique of cross-validation (17) was used to 
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6 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

determine the number of components that were s t a t i s t i c a l l y 
s i g n i f i c a n t . 

Table I . A r o c l o r s Samples Composing the T r a i n i n g Data Set. 
Aroclor Composition 

Sample # 1242 1248 1254 1260 Replicate # 
1 0 0 1 0 1254-1 
2 0 1 0 0 1248-1 
3 0 0 0 1 1260-1 
4 1 0 0 0 1242-1 
5 1 0 0 0 1242-2 
6 0 0 0 1 1260-2 
7 0 0 1 0 1254-2 
8 1 1 1 1 1:1:1:1-1 
9 1 1 1 1 1:1:1:1-2 

10 1 
11 1 
12 0 1 1 0 -13 0 0 1 1 -14 0 1 0 1 -15 1 0 0 1 -

P r i n c i p a l Components Plots 

By using SIMCA-3Β program, FPLOT.EXE, one can plot 
numerous variables derived from the p r i n c i p a l components 
calculations. Because a printer i n the character mode i s 
used with t h i s program to plot variables, the plots are 
r e s t r i c t e d to two-dimensional presentations. 

The program 3DPC.BAS (Principal Data Components) 
provides a means to plot sample scores i n 3-D and color i f 
three p r i n c i p a l components are calculated. The 3-D 
display derived from the sample score values may be 
transferred to a disk f i l e by using the program, 
FRIEZE.COM, supplied as part of PC-PAINT BRUSH or 4-Point 
Graphics (International Microcomputer Software, Inc., 
[IMSII]), San Rafel, CA 94991). The image i s stored on 
disk and can be edited, enhanced, or labeled with a 
commercial software package such as PC Paint Brush 
(IMSII). The screen image can also be printed on a color 
or black/white printer. 

RESULTS and DISCUSSION 

Analyses of PCBs can create large data sets that are 
d i f f i c u l t to interpret, since there are 209 PCB isomers. 
Isomer compositions may vary widely due to d i f f e r e n t i a l 
p a r t i t i o n i n g or metabolism of compounds. In addition, wide 
differences i n residue p r o f i l e s may exist i n the biota 
l o c a l l y because of variations i n effluents, combustion, 
or other source of residues. Chemometric methods can 
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1. STALLING ET AL. Laboratory Mixtures and Environmental PCBs 7 

greatly improve the analyst's a b i l i t y to describe and 
model residues i n these diverse samples. 

The u t i l i t y of p r i n c i p a l components modeling of 
multivariate data l i k e those encountered i n these complex 
mixtures, originates from graphical presentations of 
sample s i m i l a r i t y , as well as from s t a t i s t i c a l results 
calculated by the SIMCA-3Β programs (3). Sample data are 
treated as points i n higher dimensional space, and 
projections of these data are made i n two- or three-
dimensional space i n a way that preserves most of the 
existing relations among samples and variables (3). This 
feature i s especially helpful i n v i s u a l i z i n g data of more 
than three dimensions. 

The calculations involved i n p r i n c i p a l components are 
summarized i n Equation [1]. The objective was to derive a 
model of a data set having k samples and i variables i n 
which the concentration or value of any measured value, 
x i k ' c o u l d b e calculated
the product of e
designated the a t h component '^score  for sample k, and B ^ 
(Beta) i s designated as the "loading^ for variable i i n 
pr i n c i p a l component a. The term i s the mean of 
variable X^ i n a l l samples. The residual term (or 
unexplained part of the measurement not modeled) i s 
designated Ejw and "A" describes the number of pr i n c i p a l 
components extracted from the data. A more detailed 
discussion of t h i s approach was given by Dunn et a l . 
(6,18). 

The concentration data obtained from each sample 
analysis were expressed as fra c t i o n a l parts and normalized 
to sum to 100. The normalized data were s t a t i s t i c a l l y 
analyzed, and three p r i n c i p a l components (A=3, Equation 
[1]) were calculated. The PCB constituents (varibles) are 
numbered sequentially and correspond to peak #1, peak #2, 
... to peak #105. The structure and retention index of 
each constituent i n the mixture were reported by Schwartz 
et a l . (9). The tabular l i s t i n g of the data i s available 
from the present authors. 

The Aroclor samples l i s t e d i n Table ι were modeled by 
pr i n c i p a l components to i l l u s t r a t e how the resul t from 
p r i n c i p a l components calculations can be used i n 
describing PCB data. The sample scores (Figure 2, A.-
Theta-1 vs. Theta-2; B. Theta-1 vs. Theta-2; and C -
Theta-2 vs. Theta-3) are plotted for the samples. 

Results obtained from the plots of the variable 
loadings (Figure 2, A'- C 1) for the three components 
provide insight into the importance of the GC Peaks i n 
separating the various Aroclors and t h e i r mixtures (Figure 
2, A - C) . The loading plots show a separation of 
variables that are t i g h t l y clustered, the groups of 
variables radiating outward from the center. They are 
clustered i n groups that r e f l e c t the variables that are 
char a c t e r i s t i c of the individual Aroclors. 

The sample scores (Theta-1, Theta-2, and Theta-3) i n 
each component were used to represent the samples i n a 3-D 
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8 ENVIRONMENTAL APPLICATIONS OF C H E M O M E T R I C S 

SAMPLE SCORES VARIABLE LOADINGS 
A. A R O C L O R . T 9 0 X - P C 1 , Y - P C 2 A*. A R O C L O R . C 9 0 X - B E T 1 , Y - B E T 2 

B. A R O C L O R . T 9 0 X - P C 1 , Y - P C 3 B*. A R O C L O R . C 9 0 X - B E T 1 , Y - B E T 3 

C. A R O C L Q R . T 9 0 X - P C 2 , Y - P C 3 C . A R O C L O R . C 9 0 X - B E T 2 , Y - B E T 3 

Figure 2. Principal Components Plots for Aroclor Samples 
(ref. Table 1 for Sample i.d.) 
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1. STALLING ET A L . Laboratory Mixtures and Environmental PCBs 9 

graph (Figure 3). This plot shows that while much of the 
sample information may be discerned from a two component 
model, i t i s impossible to t e l l i f an Aroclor mixture i s 
composed of more than a mixture of three Aroclors. The 3-
D presentation i l l u s t r a t e s more c l e a r l y than three 2-D 
plots, how complex data may be viewed and relations among 
the samples more c l e a r l y comprehended than when data are 
presented i n tabular form. 

Figure 3. 3-D Plot of Principal Components Scores (Theta-1,-2,-3) Representing 
Normalized Isomer Composition Data for Aroclors 1242, 1248, 1254, 
1260, and their mixtures. The points for each Aroclor represent 
individual sample analyses. The plot in the upper right quadrant is 
the view parallel to the Z-axis. 

The p r i n c i p a l components model of the Aroclor samples 
(Table I) preserves greater than 95% of the sample 
variance of the entire data set. From the 3-D sample 
score plot (Figure 3) one can make these observations: PCB 
mixtures of two Aroclors form a straight l i n e ; three 
Aroclor mixtures form a plane; and that possible mixtures 
of the four Aroclors are bounded by the intersection of 
the four planes. Samples not bounded by or inside the 
volume formed by the intersection of the four planes may 
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10 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

be derived from, but are not i d e n t i c a l to, mixtures of 
Aroclors. 

In SIMCA-3B, modeling power i s defined to be a 
measure of the importance of each variable i n a p r i n c i p a l 
component term of the class model (18). The modeling 
power has a maximum value of one (1.0) i f the variable i s 
well described by the p r i n c i p a l components model. 
Variables with modeling power of less than 0.2 can be 
eliminated from the data without a major loss of 
information (18). 

For the PCB mixtures we analyzed (Table I ) , the 
modeling power was determined on the basis of a three 
component model (A=3). These data revealed that most of 
the 105 GC-peaks play an important role i n the class model 
for the four Aroclors and t h e i r mixtures. The modeling 
power of each variable i s plotted (Figure 4) for each 
component term along with a plot of the concentration 
p r o f i l e of sample 9
1242:1248:1254:1260 i
represents i t s f r a c t i o n a l composition. 

Reproducability aspects of the analysis i s reflected 
i n the nearly i d e n t i c a l proximity of each of the replicate 
analyses (Table I ) . Use of t h i s s t a t i s t i c a l technique to 
examine sample residue p r o f i l e s from d i f f e r e n t locations 
has lead to an improved understanding of complex mixtures 
of contaminants and related problems. 

Residues i n Forster's Tern Egcrs 

A decline i n reproductive success and increased incidence 
of deformed young were observed i n colonies of Forster's 
terns, common terns, cormorants, and herons i n and near 
Green Bay (14, 20). The samples from two Wisconsin 
locations (Lake Poygan and Green Bay) were analyzed for 
individual PCBs using the method described by Schwartz et 
a l . (9) . Residue levels for the t o t a l PCB content (Table 

i i ) represent the sum of the individual PCBs present i n the 
sample. 

For the SIMCA analyses, the individual PCB 
isomer concentrations were normalized to sum 100. We 
examined the data by using the SIMCA-3Β program to 
calculate p r i n c i p a l components and to plot sample scores 
i n a manner i d e n t i c a l to that discussed for the Aroclor 
mixtures. The plot of sample data i l l u s t r a t e s that the 
geographic locations have d i f f e r e n t residue p r o f i l e s 
(Figure 5). 

The PCBs present i n eggs collected from Green Bay 
birds were similar to Aroclor 1254, and the t o t a l PCB 
concentrations were about 6 times greater than those i n 
Lake Poygan. The composition of PCBs i n eggs 
collected from Lake Poygan birds were less consistent and 
tended to l i e farther from a l i n e between Aroclors 1254 
and 1260 (Figure 5) . We found that the geographical 
o r i g i n of the samples (Lake Poygan or Green Bay) could be 
ascertained with a probability of 0.85 by using a class 
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1. STALLING ET A L . Laboratory Mixtures and Environmental PCBs 11 

Figure 4. Plots of the Fractional Composition of an Aroclor Mixture (A, Sample 
9, Table 1) and the Modeling Power for a Three Component Model of 
the Samples in Table 1: PC-1 (B); PC-2 (C); and PC-3 (D). 

model of each group based on normalized residue data. 
This was determined using the program the SIMCA-3Β program 
"CLASSI" to c l a s s i f y the samples. 
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12 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

Table I I . Residues of PCB i n Tern Eggs C o l l e c t e d from Lake Poyga 
and Green Bayl 

Mean PCB Residue 
Collection Site (ug/g wet weight) 

Lake Poygan 20.

Green Bay 3.7 (1.5) 

^each composite sample contained 6 eggs 
^standard deviations in parentheses 

Figure 5. Principal Components Plot Derived from Analysis of Aroclor 
Standards, Their Equal Mixture, and Eggs of Forster's Tern. 
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Two Aroclor 1260 standards (Â ^ and A 2) were included 
i n these analyses. One standard was from the Columbia 
National Fisheries Research Laboratory, and the other from 
the Patuxent W i l d l i f e Research Center (U.S. Fish and 
W i l d l i f e Service, Laurel, MD.) A difference i n the 
concentration of one constituent of about 30% was 
responsible for the small difference observed between the 
two Aroclor 1260 standards (Figure 5.) Use of a 
quantitative chemometric method to describe compositional 
residue differences measured i n environmental samples may 
prove helpful i n correlating residue p r o f i l e s and 
concentrations with observed b i o l o g i c a l effects, such as 
decreased survival of young birds. 

SUMMARY 

These applications demonstrate that pattern recognition 
techniques based o
e f f e c t i v e l y used to
residues. In comparisons of PCBs i n b i r d eggs collected 
from d i f f e r e n t regions, we demonstrated through the use of 
SIMCA that the p r o f i l e s i n samples from a r e l a t i v e l y clean 
area d i f f e r e d i n concentration and composition from 
p r o f i l e s i n samples from a more highly contaminated 
region. Quality control can be evaluated by the proximity 
of replie?ce analysis of samples i n p r i n c i p a l components 
plots. 

More extensive use of isomer s p e c i f i c analysis, when 
combined with chemometric techniques, should improve 
insight into how residues in the environment relate to 
t h e i r sources. This approach could lead to a quantitative 
description of changes i n the composition of these 
chemicals as they pass through the food chain and are 
distributed i n the environment. 
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Evaluating Data Quality in Large Data Bases Using 
Pattern-Recognition Techniques 

Robert R. Meglen and Robert J. Sistko 

Center for Environmental Sciences, University of Colorado at Denver, Denver, CO 80202 

Increased sophisticatio
computerized data acquisition have quantitatively and 
qualitatively changed analytical chemistry. Chemists 
measure more variables and perform more experiments in 
less time than feasible just a few years ago. Without a 
concomitant enhancement of interpretive skills the new­
-found data affluence may be a curse and not a blessing. 
More data tend to cloud the issue rather than clarify it. 
The result of the paradox is that many useful observa­
tions remain uninterpreted. Pattern recognition tech­
niques have been used to enhance the interpretation of 
large data bases. This paper describes how these tech­
niques were used to examine a large water quality 
monitoring data base. The paper describes how pattern 
recognition techniques were used to examine the data 
quality, identify outliers, and describe underground 
water chemistries. 

Intensive instrumental and analytical methods research performed 
during the 1970!s has clearly contributed to the confidence with 
which current research results are reported. Examination of recent 
literature shows that research protocols have departed from simplis­
t i c single element studies and have incorporated more r e a l i s t i c 
experimental designs that include multi-elemental determinations. 
This change reflects a growing awareness that chemical interactions 
between chemical species are important in complex chemical systems. 
Increased reliance on multi-elemental analysis reflects the ease with 
which such analyses can be performed. Recent advances in electronics, 
chemical instrumentation, and computerized data acquisition have 
quantitatively and qualitatively changed analytical chemistry. 
Chemists measure more variables and perform more experiments in less 
time than feasible just a few years ago. In spite of our recently 
acquired data affluence, many complex problems remain unsolved. The 
enhanced insight that additional data were to provide has failed to 
materialize. In some cases, more data cloud the issue rather than 
c l a r i f y i t . Acquiring massive quantities of data i s ineffective until 
interpretations are made and incorporated into a mechanistic descrip­
tion of the system. 
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2. MEGLEN AND SISTKO Data Quality in Large Data Bases 17 

Data are not information. Powerful interpretive aids that match 
the sophistication of the instrumental tools are required to 
f a c i l i t a t e the task of converting data into information and f i n a l l y 
into knowledge of the system. In recent years an increasing number of 
"data burdened" researchers (1-3,6,9-14,16,18) have begun to employ 
some of the s t a t i s t i c a l techniques that found broad application in 
the social sciences during the 1940's. These techniques, loosely 
termed pattern recognition, are based upon factor analysis, principal 
component analysis, classification analysis and cluster analysis. 
These techniques greatly enhance the assimilation of massive data 
bases and provide a valuable mechanism for summarizing multivariate 
data. As an il l u s t r a t i o n of how these techniques assist in the ex­
amination of large data bases we shall employ an example from the 
f i e l d of environmental chemistry. 

Environmental studies are often characterized by large numbers 
of variables measured on many samples. When poor understanding of the 
system exists one tends to rely upon the "measure everything and hope 
that the obvious w i l l appear
plex chemical systems significan
obvious when one examines the data one variable at a time. Interac­
tions among the measured chemical variables tend to dominate the data 
and this useful information i s not extracted by univariate ap­
proaches. 

The need for multivariate techniques i s apparent when one con­
siders that each measured parameter contributes one dimension to the 
representation. Thus examining two parameter interactions requires a 
two dimensional plot. Such graphical representations are effective in 
identifying significant relationships among the variables. A three 
variable system requires a three dimensional plot to simultaneously 
represent a l l potential bivariate interactions. However, as the 
number of variables increases the dimensionality of the required 
representation exceeds man's a b i l i t y to perceive significant patterns 
in the data. Indeed, humans do not conceptualize comfortably beyond 
three dimensions. Without assistance one would be restricted to 
considering only problems that are characterized by three factors. 
(If one restricts the interpretive task to two variable interactions 
one may generate a series of two dimensional graphs, one for each 
unique bivariate pair. Again, the mere task of examining a l l of the 
plots becomes formidable. A data base consisting of 35 measured 
variables would require examining 595 plots!) One commonly computes a 
correlation matrix consisting of a l l unique bivariate correlation 
coefficients to summarize the variable interactions. While this type 
of summary is helpful, i t provides l i t t l e insight regarding the 
natural associations among groups of variables. The more powerful 
factor analytic treatment extracts the significant underlying 
relationships that characterize the data. Factor analysis provides 
the tools by which data are converted to information. It i s in these 
natural associations that one hopes to find the clues to uncover 
otherwise obscure mechanisms. 

A second capability that one needs in examining large data bases 
i s a convenient way to represent relationships among samples or 
objects upon which the measurements have been made. This procedure i s 
analogous to the search for variables that are associated with one 
another. Group behavior among the objects indicates that significant 
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distinctions are possible, and the distinctions lead to useful 
generalizations that simplify complex systems. In addition to provid­
ing a useful summary of the total data base, this representation 
provides a valuable aid to identifying unusual sample behavior. Once 
unusual behavior has been identified, one can begin to examine the 
possible causes. The causes for anomalous behavior are often simple 
measurement error. Thus, identifying outliers helps focus attention 
on the distinctions that make a difference. 

The Rationale for Using Pattern Recognition 

We w i l l i l l u s t r a t e the application of pattern recognition techniques 
on a water quality data base. Baseline water quality data was ac­
quired by Cathedral Bluffs Shale Oil Company and supplied to our 
laboratory on magnetic tape. The water quality monitoring program on 
o i l shale lease tract C-b (western Colorado) was designed to comply 
with State permitting requirements. The data had not been examined 
previously because the dat
limitations described earlier
different types of waters as illustrated in Figure 1. Monitoring 
wells were dr i l l e d to permit sampling deep bedrock aquifers above and 
below an aquitard (the Mahogany Zone) which was to be mined for i t s 
rich o i l shale. It had been known that the upper and lower aquifers 
contained waters with different qualities. One of the goals of the 
monitoring program was to determine whether the upper and lower 
aquifers communicate with one another, and whether future mining 
within the aquitard separating them might introduce communication 
that could degrade aquifer water quality. Monitoring wells d r i l l e d 
into the upper aquifers were designated as "WX" wells and wells 
sampling the lower aquifers were designated as "WY" wells. Shallower 
monitoring wells, designated as "WAfs", were dr i l l e d to sample waters 
contained in the unconfined aquifers of the alluvium. Other surface 
waters, springs and seeps, in contact with the alluvium were also 
sampled. These were designated as "WS"-type waters. Another goal of 
the monitoring program was to determine whether any WA or WS type 
waters originated in either of the deeper confined aquifers (WX and 
WY). Water seeping into the mined zone was pumped to suface holding 
ponds. Shallow wells ("WW"-type) dr i l l e d into the alluvium around the 
holding ponds were monitored to detect any leaks in the holding 
ponds. Several WX and WY wells were recompleted during the monitoring 
program in order to sample specific regions of the upper and lower 
aqufers. These are designated as R wells. Thus water samples from 6 
categories and 89 sampling sites were analyzed for 35 chemical 
parameters over a five year period. Prodigious numbers of conven­
tional two dimensional plots would be required to examine parameter 
versus time and a l l other bivariate relationships. 

Simple examination of plots of each variable versus time would 
require 35 plots. If distinction among the different sampling loca­
tions were to be examined 3115 plots would be required. Since i t i s 
usually of interest to determine whether there are any significant 
bivariate relationships (correlations) among the measured variables, 
one would need to examine a total of 595 scatter plots. If one were 
to seek discrimination among each of the categories 3570 plots would 
be required. In a monitoring program i t i s important to examine the 
individual behavior of each individual sampling site; this requires 
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Figure 1. Schematic diagram showing the monitoring system. (A) 
recompleted well, (B) surface holding pond with WW monitor, (C) 
WX/WY deep bedrock wells. 
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52,955 plots! Thus, complete examination of the data base would 
require the preparation and examination of over 60,000 unique plots. 
It i s likely that only a few of these plots would yield insight about 
the relationship of the measured variables with one another and the 
underlying geochemistry of the waters, but we need an unbiased guide 
to decide which plots to examine. In addition, even i f we were to 
examine a l l plots we could s t i l l miss relationships that involve more 
than two variables at a time. 

In addition to the quantitative d i f f i c u l t i e s attending conven­
tional data base examination there are several qualitative limita­
tions imposed by the nature of the measurements themselves. Many 
standard s t a t i s t i c a l techniques require some knowledge or assumptions 
about the shape of the distribution of measured values. Many environ­
mental variables do not have well behaved distributions; some are 
highly skewed and some are multimodal. Robust analysis of these data 
requires techniques that do not rely upon a priori knowledge or 
assumptions about the underlying variable distributions. Qualitative 
limitations and the magnitud
computer assisted examinatio
exploited the power of computer assisted pattern recognition tech­
niques in examining this data base. 

The mathematical techniques employed in pattern recognition 
permit rapid and efficient identification of relationships and key 
aspects that otherwise might remain hidden in the large mass of 
numbers. Since the data base was not well characterized we set the 
following objectives for the interpretive study: 

Evaluate the quality of the data. 

Describe the water chemistries represented in the sample 
categories. 

Determine the key chemical parameters that govern non-stochastic 
behavior. 

Determine the "chemical fingerprints" that identify the various 
waters. 

Develop a classification model that permits aquifer indentifica-
tion. 

Identify the sampled aquifers and determine whether interaquifer 
communication occurs. 

Pattern Recognition Principles 

There are several advantages that obtain from the application of 
pattern recognition for data interpretation. The methods can rapidly 
identify key variables that are important to time related changes in 
the monitoring wells or among the well categories. This greatly 
reduces the number of two dimensional plots that must be examined 
since the technique extracts the relatively few plots that are li k e l y 
to be most effective in displaying differences that make a d i f ­
ference. Another advantage of these techniques i s that they are 
multivariate, they incorporate many variables simultaneously. Since 
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complex chemistry i s involved one must rely upon interpretive tech­
niques that are sensitive to variable interactions. Since the factor 
analysis technique begins by computing the variance-covariance matrix 
i t incorporates information about subtle changes that slightly affect 
several variables simultaneously. This type of change i s easily 
missed when examining only one or two variables at a time. In addi­
tion, the technique gives equal weight to variables with small ab­
solute values relative to other large variables. This i s accomplished 
by autoscaling or z-scoring data. When one examines unsealed data 
there i s a natural tendency to focus on variables with large mag­
nitudes; thus, significant information about chemical interactions 
among trace elements i s easily missed. Autoscaling the data ensures 
that the search for relevant variance among small numbers i s not 
obscured by large invariant features. 

The pattern recognition approach consists of two phases; ex­
ploratory data analysis and applied pattern recognition (class­
i f i c a t i o n model development)  The purpose of the exploratory phase i s 
to uncover the basic relationship
between the samples. Th
strength of these basic relationships and other presumed relation­
ships by developing classification-prediction models and determining 
their accuracy. A brief description of the exploratory phase i s given 
here. Details of the procedures may be obtained from published work 
(4,5,7,15). 

Before any work can proceed i t i s necessary to prepare the 
existing data base for computerized examination. A data cleanup step 
consists of a search for several potential problems that could 
restrict the f u l l u t i l i z a t i o n of the existing data. Columns of 
measurements that are incomplete can be " f i l l e d " i f only a small 
percentage of samples have missing measurements. It i s possible to 
" f i l l " the missing data items in an unbiased way so that a l l of the 
measurements can be used. Several f i l l i n g options are available to 
accomplish this goal. However, complete treatment of these techniques 
is not possible here. Missing data in the example presented here were 
f i l l e d by substituting the variable's mean value for missing data 
items. If most of the measurements are missing one must delete the 
variable from further consideration. Chemical data are often entered 
as "below detection limit". Designation as below detection limit i s a 
quantitative determination; i.e. i t contains useful information 
relative to a l l samples that exceed the detection limit. Protocols 
for pre-treating detection limit data permit exploitation of the 
information contained in these numbers. Once the data base has been 
prepared for use i t i s placed into a storage format for the computer 
algorithms (in this case we used a pattern recognition package called 
ARTHUR (8) and multivariate s t a t i s t i c a l routines found in SPSS.(17)) 

Exploratory data analysis i s designed to uncover three main 
aspects of the data: 

• anomalous samples or measurements 

• significant relationships among the measured variables 

• significant relationships or groupings among the samples 

Exploratory data analysis i s an iterative process in which a wide 
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variety of tools are employed. There i s no set sequence in which 
these tools are applied. Each data base may be approached in a d i f ­
ferent way, but after a l l of the iterations and alternate paths have 
been explored the key findings should converge to a single coherent 
summary of the data base. The f i r s t approach i s consistent with the 
most basic assumption of the exploratory analysis, that a l l of the 
data are "good" and that nothing i s known about the structure of the 
data base. This approach i s particularly useful when other inter­
pretation attempts by techniques other than pattern recognition have 
been exhausted. This approach i s powerful since i t does not impose a 
bias about the data base that precludes exploring so-called unfruit­
ful paths. By i n i t i a l l y including a l l of the data, regardless of any 
predisposition toward i t s value, we rely upon the pattern recognition 
algorithms to identify unusual behavior. There is a fundamental 
philosophical reason for preferring this approach. Instead of search­
ing the data for an answer, we ask the more fundamental question, 
"What do the data t e l l us?" By examining anomalous behavior our 
attention i s focused on
ships that can be identified
difference and then attempt to explain i t . After successive layers of 
explainable results (information) have been peeled away only "noise" 
remains. As each anomaly i s identified and confirmed by independently 
established knowledge of the data base, one gains insight about the 
system and confidence that useful information i s being uncovered. The 
older literature on a r t i f i c i a l intelligence calls this approach 
unsupervised learning. The three primary tools used in this approach 
are factor analysis, principal component analysis, and cluster 
analysis. 

Factor Analysis 

Factor analysis typically consists of two steps; a s t r i c t l y mathe­
matical step called principal component analysis, followed by a 
refinement step that employs mathematical tools to enhance the inter-
pretability of the extracted factors. The aim of factor analysis i s 
to identify the few important dimensions (i.e., factors or "types" of 
variables) that are sufficient to explain the meaningful information 
in the data set. 

Since each measured parameter adds a dimension to the data 
representation, measurement of 35 variables requires the a b i l i t y to 
depict relationships in a 35-dimensional space. This i s well beyond 
the two or three dimensions where humans conceptualize comfortably. 
It i s also beyond the graphical representation capabilities commonly 
used. Factor analysis i s one of the pattern recognition techniques 
that uses a l l of the measured variables (features) to examine the 
interrelationships in the data. It accomplishes dimension reduction 
by minimizing minor variations so that major variations may be sum­
marized. Thus, the maximum information from the original variables is 
included in a few derived variables or factors. Once the dimen­
sionality of the problem has been reduced i t i s possible to depict 
the data in a few selected two or three dimensional plots. We shall 
see how these plots highlight the significant features of the under­
lying data structure. 

In addition to the graphical representations we also obtain a 
set of simple linear combinations of variables that enable us to 
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quantify similar or parallel behaviors among the measured variables. 
These variable groupings permit us to generalize the behaviors into 
factors. Qualitatively different areas where l i t t l e generalization 
can be made between two areas are referred to as separate factors. An 
example of a factor might include a group of chemical elements which, 
upon inspection, suggests that the variables included in the factor 
characterize a particular mineral. Recall that these factors arise 
out the natural association of these elements with one another, 
information derived from the chemical analyses recorded in the data, 
not from any structure imposed by the data analyst. The natural 
associations among the variables i s quantified by computing the 
correlation coefficients among a l l variable pairs. The technique 
known as principal component analysis i s accomplished by the mathe­
matical tool of eigenanalysis. Eigenanalysis extracts the best, 
mutually independent axes (dimensions) that describe the data set. 
These axes are the so-called factors or principal components. The 
u t i l i t y of constructing a new set of axes to describe the data i s 
that most of the total varianc
concentrated into a few derive
having to depict the data on dozens of bivariate plots we can recom­
pute the original sample measurements in the new data space and 
depict most of the information on just a few two dimensional graphs 
called factor score plots. This process may be viewed as projecting 
into two dimensions the original data from i t s multidimensional 
representation. As with any projection, information i s lost; but this 
technique maximizes the retention of information and quantifies the 
amount of information contained within each projection. In most 
chemical systems i t i s possible to depict 80-90% of the total infor­
mation in less than half a dozen plots. 

The second step in factor analysis i s interpretation of the 
principal components or factors. This i s accomplished by examining 
the contribution that each of the original measured variables makes 
to the linear combination describing the factor axis. These contribu­
tions are called the factor loadings. When several variables have 
large loadings on a factor they may be identified as being as­
sociated. From this association one may infer chemical or physical 
interactions that may then be interpreted in a mechanistic sense. 

Results and Use of Factor Score Plots 

Once the principal component analysis on the unexpurgated data has 
been completed one can construct factor score plots that depict the 
location of a l l the samples. These plots f a c i l i t a t e identification of 
anomalous behavior. Figures 2 through 4 i l l u s t r a t e multiparameter 
anomalous behavior found in the groundwater quality data. The circled 
points in Figure 2 display anomalies that are not easily detected by 
conventional univariate examination. Figure 2 shows two samples at 
the axes extrema. When these points are identified by sample number 
the monitoring records may be examined for potential causes. In this 
case the records indicate that a data transcription error probably 
occurred. Figure 3 shows the projection on to the plane defined by 
the f i r s t and third principal components. This plot shows that a few 
samples spread away from the majority of samples along the vertical 
and horizontal axes. Examination of the data base indicates that 
points in the shaded region correspond to samples that were collected 
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Figure 2. Factor two (hardness) vs. Factor one (salinity) factor 
score plot for 679 samples. Data entry errors identified. 
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Figure 3. Factor three (metals) vs. Factor one (salinity) factor 
score plot for 675 samples. Sampling errors identified. 
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on a single day, one from each WX and WY monitoring well. This be­
havior suggests a sampling bias on that particular day. While the 
sampling records do not permit us to ascertain the cause, i t i s 
likely that samples collected on this day were obtained without the 
usual well swabbing that nominally precedes sampling. Figure 4 i l ­
lustrates, in a single graph, the existence of analytical bias be­
tween two laboratories that supplied results. The fact that the 
original contract analytical laboratory was replaced during the 
monitoring program was not supplied to us prior to our hypothesizing 
i t from the plot features. The x-axis separates the arsenic, barium, 
chemical oxygen demand, lithium, pH, and strontium results obtained 
by the two laboratories. The vertical axis further identifies the 
d i f f i c u l t y that the f i r s t contract laboratory experienced in gener­
ating accurate trace metal (Mn, Fe, B, Cu, Ni, and Na) determinations 
on the f i r s t samples they received. Subsequent analyses performed by 
this laboratory, shown in the shaded region, at the lower right side 
of the plot, agreed more closely with the trace elemental analyses 
performed by the second
However, the f i r s t laborator
Ba, COD, L i , pH and Sr. 

Figure 5 illustrates that not a l l anomalous behavior is as­
sociated with systematic bias in sampling or analytical performance. 
Wells designated WW-12 and WW-13 are shallow wells d r i l l e d in the 
vicinity of surface holding ponds. WW-121s behavior (movement along 
Factor Four with time) indicates a leak from the holding pond. This 
finding was later confirmed by Cathedral Bluffs' personnel. The pond 
was relined with bentonite clay and well WW-12 was redesignated WW-
22. Samples were taken monthly for seven months. The sudden jump 
along Factor Four from WW-12 to WW-22 could not be explained; the 
leak had supposedly been repaired. Cathedral Bluffs offered an ex­
planation; after the relining procedure a sampling device became 
lodged in the well and a small explosive device was detonated in the 
well to free the apparatus. The charge contained an ammonium salt and 
this poses the best explanation of the anomalous behavior along the 
axis identified by ammonium and Kjeldahl nitrogen. This example 
illustrates the technique's power to identify anomalies that would 
not be identified by conventional data treatments. It further i l ­
lustrates that such behavioral patterns can lead to pertinent ques­
tions regarding the monitoring procedures not recorded in the data 
base. 

With analytical and sampling "outliers" deleted from the data 
base the search for additional patterns was undertaken. Figure 6 
shows the multidimensional behavior that characterizes WX, WY, WA, WS 
waters. (Note that several monitoring wells were recompleted during 
the monitoring program. They are depicted with open squares on this 
plot.) The shaded regions depict the multidimensional characteristics 
that permit qualitative generalizations. Surface (WS) and a l l u v i a l 
(WA) waters overlap and exhibit similar chemistries as expected. The 
deep upper aquifer well water's (WX's) variance i s concentrated along 
the vertical axis, while the deep lower aquifers exhibit variance 
along both axes. An example of the validity of these generalizations 
may be illustrated by examining Figure 7 which shows only those 
samples designated as WY type.The three points located at the lower 
lef t portion of Figure 7 have been confirmed as WX samples incor­
rectly labeled in the f i e l d as WY's. Additional information regarding 
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Figure 4. Factor two (B, Cu, Fe, Mn, Ni, Na) vs. Factor one (As 
Ba, COD, L i , pH, Sr) factor score plot for WA and WS wells only 
Analytical bias identified. 
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Figure 5. Factor four (NH3, KjN) vs. Factor one (salinity) factor 
score plot for WW wells only. Anomalous sample sites identified. 
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Figure 6. Final Factor two (hardness) vs. Factor one (salinity) 
factor score plot for 364 samples: WX ( O ) , WY (•), WA ( Δ ) , 
WS(#), R (•) wells. 
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Figure 7. Final Factor two (hardness) vs Factor one (salinity) 
factor score plot for WY wells only. Characteristic WY behavior i s 
shown. Three WX samples mislabeled as WY are shown. 
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specific aquifer identity was obtained by examining "fine structure" 
in the individual category plots. Figure 8 shows the WX waters only. 
The shaded regions of the plot depict distinctive behavior among 
upper aquifer waters. These waters have been identified as originat­
ing in separate aquifers within the upper aquifer zone. They are 
easily identfied by the distinctive behavior of the chemical species 
that contribute to separations along the vertical axis. The existence 
of separate chemical behaviors indicates that there are "chemical 
fingerprints" that may be used to identify the subsurface origin of 
the monitored waters. 

A crucial step in examining water quality data i s identifying 
the underlying chemical relationships that determine the complex 
behavior depicted in these plots. Factor analysis algorithms are used 
to generate the best composite axes to reproduce the total data 
variance. As stated earlier, these axes can be visualized as linear 
combinations of the original measured parameters. The relative con­
tribution made by each variable indicates the importance of each 
variable in explaining th
preting the factors provide
water chemistries. 

Two factors characterized most of the waters sampled in the 
monitoring program. The factor loadings for Factor one indicate that 
the following chemical species participate in correlated behavior 
that permits the separations and distinctions described above: 
alkalinity, bicarbonate, B, CI, conductance, F, L i , Mo, and Na. To 
simplify discussions in the plots shown earlier this group of species 
was called the salinity factor. Specific conductance in natural 
waters usually correlates well with hardness and not as well with 
bicarbonate, but the current study finds specific conductance closely 
related to bicarbonate and unrelated to hardness (Ca, Mg, sulfate). 
This indicates that the ions responsible for increased conductance 
are probably not calcium or magnesium, rather they are more likely 
sodium, fluoride, and chloride. 

The second important factor, called the hardness factor for 
simplicity, includes contributions from Ba, F, hardness, Mg, TDS, Sr, 
and sulfate. This factor characterizes the upper aquifer waters. One 
may rationalize the distinction between upper and lower aquifers by 
hypothesizing a natural "softening" in the lower aquifer where ion-
exchange of calcium, magnesium and sulfate occurred with sodium and 
fluoride. It i s interesting to note that fluoride occurs in both 
factors and i t alone provides a good aquifer identifier. 

Alluvial well waters and springs are chemically similar. They 
a l l exhibit moderate hardness and low salinity. These charactersitics 
may describe varying degrees of saturation in the uppermost stratum. 
This study also indicates that the measured water quality parameters 
are not capable of separating a l l u v i a l waters from springs and seeps. 
Additional parameters are necessary to differentiate the two water 
types. 

Conclusions 

Factor analysis techniques and the power of their graphical repre­
sentation permit rapid identification of anomalous behavior in multi­
dimensional water quality data. In addition, the techniques permit 
qualitative class distinctions among waters with different geologic 
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Figure 8. Final Factor two (hardness) vs Factor one (salinity) 
factor score plot for WX wells only, One WY sample mislabeled as 
WX i s shown. 
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origins because the waters bear different chemical "fingerprints". By 
examining the factor loadings one gains valuable chemical insights 
regarding the underlying chemical equilibria that characterize the 
aqueous media. While factor analytic data examination i s fundamen­
tal l y context free, i.e., i t does not depend on any a priori assump­
tions regarding hypothesized chemical mechanisms, i t s success i s 
strongly dependent upon the analyst's knowledge of the data base and 
the system under study. The iterative process of plot selection, 
anomaly identification and factor interpretation must be viewed as a 
dynamic insight enhancement protocol. The technique does not answer 
questions, i t merely focuses attention on the key features that 
require explanation. 
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Exploratory Data Analysis of Rainwater Composition 
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While some aspects of rainwater composition are un­
derstood, a large number of important questions 
remain unresolved, particularly those relating to 
sources and controlling factors. In search for the 
chemical and meteorological factors controlling rain­
water composition we have utilized SIMCA, PLS, princ­
ipal component factor analysis, and cluster analysis 
in the analysis of data consisting of rainwater 
samples collected in Western Washington State in 
1982-83. Major steps of this type of analysis in­
clude initial data scaling and transformation, 
outlier detection, determination of the underlying 
factors, and evaluation of the effect of experimental 
error. To reduce potential masking of source-recep­
tor relationships by meteorological variability a 
data normalization technique was utilized. The com­
ponents identified for Western Washington rainwater 
were interpreted to represent the influence of atmo­
spheric oxidation of sulfur and nitrogen compounds, 
seasalt, soil, and the emissions of a nearby copper 
smelter. 

Considerable interest in the composition of rainwater has been 
expressed by members of the sc i e n t i f i c community in the United 
States and elsewhere. "Acid rain" has been suggested as the culprit 
for observed degredation of te r r e s t r i a l and aquatic ecosystems in 
the Northeastern United States, Canada, Germany, and Scandanavia. 
While some aspects of rainwater composition are understood, a large 
number of important questions remain unresolved, particularly those 
relating to sources and controlling factors. 

Studies of rainwater composition typically include the measure­
ment of the concentrations of a number of chemical species, conduc­
t i v i t y , and rain volume and sometimes include supporting measurement 
of winds or other meteorological parameters. Much of the desired 
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information, the intercorrelations among the measurements, may 
remain hidden in the complexity of the data. Multivariate pattern 
recognition techniques attempt to identify underlying factors con­
tained in the measurements while reducing the dimensionality of the 
data. The measurement of available information (such as the concen­
tration of an element) is used as a step towards identifying these 
underlying factors since the factors, themselves, are not directly 
measureable (e.g., the influence of a smelter or seasalt). In a 
search for the chemical and meteorological factors controlling rain­
water composition we have demonstrated the performance of these 
techniques in the analysis of data consisting of rainwater samples 
collected weekly at three sites in Western Washington State in 
1982-83. 

The approach we have undertaken involves the identification of 
the underlying factors governing precipitation composition at i n d i ­
vidual sites supplemented by identification of the factors which 
link the local composition at different sites within a region
Major steps in this typ
and transformation, outlie
underlying factors, and evaluation of the effect that experimental 
procedures may have on the variance of the results. Most of the 
calculations were performed with the ARTHUR software package (1). 

Methodology 

We have combined classical s t a t i s t i c a l techniques with graphical 
techniques which allow the user a more direct interaction with the 
data than would be achieved by a "black box" operation of purely 
mathematical techniques. 

For a data set where many samples are available the data reduc­
tion begins with treatment of missing values by elimination of 
samples with more than one missing measurement to avoid introducing 
bias associated with f i l l i n g out a large number of missing values. 
Single missing values are mean-filled. Due to the low concentra­
tions of many species in rain, measurements below the detection 
limit of the analytical technique must be specially treated. 
Substitution of a random number between zero and the lower detection 
limit avoids introducing correlations which would occur i f a 
constant or zero value i s used. This approach preserves the useful 
information that the undetected specie has a very small concentra­
tion relative to other samples and to other species. 

A problem in the analysis of these data i s the potential 
masking of some sources of va r i a b i l i t y by other correlated variables 
which may be d i f f i c u l t to quantify. For example, the potential 
meteorological influences of atmospheric dispersion and mixing, 
scavenging differences between warm and cold clouds, variable rates 
of oxidation of sulfur and nitrogen species, and the dilution effect 
of variable rain volume may mask source-receptor chemical relation­
ships. A particular problem is that meteorological data and 
source-receptor locations share directional dependence. 

To help reduce these influences, various data normalization 
techniques may be applied. Analysis of deposition (concentration 
times volume) rather than concentration alone may help avoid varia­
b i l i t y associated with precipitation amount. Another approach which 
was previously applied to aerosol measurements i n Sweden (2) 
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involves converting concentrations to the ratio of an individual 
specie to the total concentration of a l l dissolved species. The 
data analysis is then performed on these normalized or relative 
concentrations. To the degree that an assumption of constant 
scavenging efficiency holds (each element is removed from the 
atmosphere with equal efficiency) relative concentrations might be 
expected to better reflect the influence of a pollution source, 
which, over time might experience differing amounts of dilution by 
air and water. This technique may produce spurious correlations due 
to closure (the constant sum) depending on the data structure before 
normalization (3). 

The multivariate techniques which reveal underlying factors 
such as principal component factor analysis (PCA), soft independent 
modeling of class analogy (SIMCA), partial least squares (PLS), and 
cluster analysis work optimally i f each measurement or parameter is 
normally distributed in the measurement space. Frequency histograms 
should be calculated to check the normality of the data to be ana­
lyzed. Skewed distribution
studies due to the proces
They should be transformed before further data analysis (4^). Often 
the natural logarithm w i l l convert a skewed distribution to a 
roughly gaussian shape. A l l further data analysis is performed on 
these transformed measurements. Normalized or transformed 
measurements are termed "features" in the following discussion. 

Pattern recognition techniques represent each sample as a point 
in N-dimensional space, their coordinates along the axes are the 
values of the corresponding measurements. For only two measurements 
per sample this is equivalent to representing the sample as a point 
on standard two dimensional graph paper. Projection of N-dimen­
sional data onto two dimensional principal component plots provides 
a good demonstration of the fundamentals of any multivariate 
technique. As in two dimensional graphical techniques the data must 
be scaled before further analysis. If no a pr i o r i knowledge about 
the importance of the different features is available, scaling is 
done to equally weight the variance of each feature. A common 
approach is termed "autoscaling" (5) where the mean of a feature is 
subtracted followed by normalization by the total variance of that 
feature. In this manner each feature is transformed to a zero mean 
and unit variance. Alternatively, the features may be weighted to 
reflect the uncertainty in their measurement, thus giving poorly 
determined features less influence on the result (6). 

SIMCA and PLS techniques generally u t i l i z e a training set for 
modeling and predicting the underlying factors in the data and for 
classification of unknown samples. This training set must be homo­
geneous and representitive of the data to be modeled and/or 
classified. Therefore, once the i n i t i a l data scaling and trans­
formation is completed i t is important to identify outliers among 
the samples so that they w i l l not bias the estimation of model para­
meters. Identification of outliers also aids in identification of 
controlling factors when the pecularities of a particular sample can 
be explained in terms of physical processes. We have used explora­
tory data analysis tools to eliminate outlier samples and choose the 
most informative features. Cluster analysis and PCA group the data 
in the measurement space to observe natural clusters and outliers. 
Projection of the samples onto the f i r s t two principal component 
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axes which represent the bulk of the variance identifies outliers as 
samples far from the rest of the data. Figure 1 i s an example of a 
principal component projection for rainwater samples collected at 
the Tolt reservoir site near Seattle, Washington, projected onto 
axes representing seasalt and aerosol principal components. One 
sample near the upper l e f t corner of the plot is far from the bulk 
of the data and is considered an outlier. 

The determination of the underlying factors which affect the 
precipitation composition at a site is done by PC analysis in combi­
nation with clustering of sample features. The f i r s t step in this 
process is to identify the "intrinsic dimensionality", the number of 
controlling factors which are significant in characterizing the 
rainwater composition. The original number of features are thus 
reduced to a smaller number of components which contain the informa­
tion of those original features. The choice of significant factors 
for a site can be verified by cross-validation (7) . 

The determination of which features the underlying factors are 
composed of provides a basi
to the factors. Varimax
in the interpretation of the factors. Hierarchical dendrograms 
indicate feature clusters whose composition are analogous to PC 
factors. The physical interpretation of the clusters and principal 
components indicates the influence of pollution emission sources or 
meteorological processes on the rainwater composition at an 
individual monitoring site. 

If the original data contain information on the uncertainties 
associated with each measurement the sensitivity of the variance of 
the results to these errors can be studied. Approaches include 
uncertainty weighting during the autoscaling procedure which is pro­
vided for in ARTHUR, uncertainty scaling (the data standard 
deviation used for autoscaling i s replaced by the measurement 
absolute error such as presented in Table VII), and Monte Carlo 
simulation for estimating the variance of the statis t i c s based on 
the error perturbed data 06). 

After determining the underlying factors which affect local 
precipitation composition at an individual site, an analysis of the 
similiar i t y of factors between different sites can provide valuable 
information about the regional character of precipitation and i t s 
sources of variability over that spatial scale. SIMCA (8) is a 
classification method that performs principal component factor ana­
lysis for individual classes (sites) and then classifies samples by 
calculating the distance from each sample to the PCA model that 
describes the precipitation character at each site. A score of 
percent samples which are correctly classified by the PCA models 
provides an indication of the separability of the data by sites and, 
therefore, the uniqueness of the precipitation at a site as modeled 
by PCA. 

Spatial interrelationships in the chemical composition among 
two or more blocks (sites) can be calculated by partial least 
squares (PLS) (9). PLS calculates latent variables similiar to PC 
factors except that the PLS latent variables describe the correlated 
(variance common to both sites) variance of features between sites. 
Regional influences on rainwater composition are thus identified 
from the composition of latent variables extracted from the 
measurements made at several sites. Comparison of the results 
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obtained from PCA, SIMCA, and PLS models allows the data analyst to 
separate local and regional influences on precipitation composition. 

Results 

We have applied the above approach to a data base consisting of 
weekly measurements of 14 chemical species in Western Washington 
State rainwater (ammonium, nitrate, chloride, sulfate, arsenic, 
cadmium, copper, lead, zinc, potassium, magnesium, sodium, calcium, 
and hydrogen ion from pH), conductivity, r a i n f a l l volume, r a i n f a l l 
rate, surface wind speed (U), and frequency of wind direction from 
four sectors (NE, SE, SW, NW). Samples were collected at three 
sites, in Seattle and in the foothills of the Cascade Mountains in 
Washington State over one year (10). Figure 2 indicates the 
location of the monitoring sites and a nearby copper smelter which 
is a major sulfur dioxide emission source. Additional emissions 
occur in the Seattle area, primarily between the West Seattle and 
Maple Leaf sites. The win
that the wind is from a
associated with wind direction was deliberately minimized in advance 
by site selection directly downwind of the smelter. 

The chemical analyses were performed in the USEPA Manchester, 
WA water quality labs by atomic absorption and autoanalyzer 
techniques. Charge balance calculations indicated that a l l 
dissolved species of significance were analyzed. Comparison of 
fil t e r e d and unfiltered aliquots suggested that un-ionized species 
were not present in appreciable quantities. Sampling and analysis 
uncertainties were determined by the operation of two co-located 
samplers for 16 weeks. The calcium and sulfate data were corrected 
for the influence of sea salt to aid in the separation of the 
factors. This correction was calculated from bulk sea water 
composition and the chloride concentration in rainwater (11). Non 
seasalt sulfate and calcium are termed "excess" and flagged by a * 
in the following discussion. 

Histograms revealed approximately lognormal distributions for 
Cl, Na, Mg, K, Ca*, As, Pb, Cd, Cu, Zn ang H so those features were 
transformed by the natural logarithm. SO^, N0~ and NĤ  distribu­
tions were roughly gaussian and were not transformed. 

After i n i t i a l data reduction (treatment of missing values, 
transformation and autoscaling) cluster analysis and PCA were used 
to visually identify outliers among the samples and to determine 
which features did not contribute to the interpretation of the 
underlying factors. PCA and cluster analysis were performed f i r s t 
on the transformed and scaled but unnormalized data. Figure 3 
presents the dendrogram (complete link method) for the clustering of 
a l l 22 chemical concentrations and meteorological features at the 
West Seattle site. Variables connected at high similarity values on 
this dendrogram contain similar information about the rainwater 
composition. Relatively tight groupings exist for Na, Mg, and CI or 
for N03 and NĤ . The separate branch for As, Pb, Cu, SO*, Η , wind 
speed, SW wind direction, and Cd demonstrates that these variables 
are connected with the remainder of the data set at very low 
similarity values. This is consistent with a separate source of 
va r i a b i l i t y in the data due to emissions from the Tacoma copper 
smelter (the smelter routinely reduces emissions during low wind 
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COMPONENT I '· N H 4 > N03 (19.7% of variance) 

Figure 1: Principal component projection for rainwater samples 
collected at the Tolt River site. 

Figure 2: Map of Western Washington with wind direction during 
rain and locations of the Tacoma copper smelter (1) and moni­
toring sites at West Seattle (2), Maple Leaf (3), and the Tolt 
Reservoir (4). 
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speed or winds from the north). Dendrograms for the other sites 
were similar. Zn, K, conductivity, and some of the meteorological 
data were subsequently eliminated from the data set because they did 
not contribute to the separation of factors or the interpretation of 
the results. PC projections (such as illustrated in Figure 1) and 
clustering of samples (as opposed to clustering of features which is 
displayed in Figure 3) were used to identify rainwater samples which 
were outliers (as previously described) and might bias the 
estimation of the PLS and PCA model parameters. These samples were 
eliminated from the data set before further analysis. 

Principal component factor analysis followed by varimax 
rotation of six factors was performed on four different subsets of 
the remaining data (each with different preprocessing): 

1) Concentration of 14 species with wind direction and r a i n f a l l 
amount, 

2) Concentration of 12 species, 
3) Deposition of 12 species (concentration times r a i n f a l l 

amount), 
4) Fractional concentratio
The results of the PCA from each subset are similar except that 

the data subsets which did not either include the meteorological 
data or normalize the data to reduce meteorological variability 
(subsets 2 and 3) were not able to separate several of the com­
ponents probably due to the atmospheric masking effect. Information 
on the wind direction and r a i n f a l l quantity dependence of seasalt 
and metals i s obtained when meteorological data are included in the 
analysis. From the standpoint of separation of chemical factors the 
fourth subset (normalization to fractional composition) provided the 
best resolution of the data. Using deposition or concentrations, a 
component that indicated a combined influence of sulfate, nitrate, 
lead and calcium emission sources was resolved into separate com­
ponents when the fractional composition data were analyzed by PCA. 

In the interpretation of these results i t is important to con­
sider the normalization of the data to fractional concentrations and 
potential spurious correlations due to closure of the data set. 
Recent work (3) indicates that closure is not a problem when the 
data set consists of more than eight variables of equal means and 
variance. If one or several variables are large relative to the 
others, closure may result in an a r t i f i c i a l negative correlation 
between the larger variables and, sometimes, a positive correlation 
among the smaller variables. Comparison of the pairwise 
correlations from the rainwater concentrations to the correlations 
for the normalized concentrations for our data reveals that only the 
hydrogen and sulfate correlations with sea salt elements are 
appreciably altered when the data set is closed. These elements are 
large relative to the rest of the data (S0£ is approximately 40 
percent of the total ionic mass) such that closure might be 
influencing the negative correlation between seasalt elements and 
SO^/H*. However, physical processes present an alternate 
explanation which indicates that this negative correlation would be 
expected to actually occur as follows: 1) seasalt (Na, CI, Mg) 
should be a higher fraction of the ions in winter when high wind 
speeds generate more salt particles, 2) hydrogen ion and SO* should 
be a higher fraction of the ions in summer when low wind speeds 
produce less atmospheric dispersion. When the data are not 
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normalized a l l ions were more concentrated during summer when 
ra i n f a l l volume was small. 

Apparently meteorology dominates the fluctuations in 
composition in such a manner that the separate pollution influences 
could be observed only after meteorological variability, especially 
variable r a i n f a l l volume, was reduced by the normalization pro­
cedure. Since the normalization technique helps to reduce vari­
a b i l i t y associated with atmospheric dispersion and scavenging, this 
result implies that meteorological variability was an important 
influence on these data. 

The weekly sampling period resulted in a variety of meterolog-
i c a l conditions for each sample and, therefore, precluded any 
resolution of samples by unique wind direction or representative 
r a i n f a l l rate. Therefore, i t was not possible to directly evaluate 
these meteorological influences on the composition of our 
precipitation samples. 

Tables I, II and III present the results of the PCA for the 
three sampling sites fo
species. A l l loadings greate
indicate separate influences o£ Na, Mg, CI (interpreted to represent 
seasalt), NH,, N0~, SO^, and H (acid aerosol) and As, Cd, and Pb 
(smelter marfter elements). The exact combinations of these species 
vary from site to site. Hydrogen ion was associated with sulfate at 
the West Seattle site but with both sulfate and nitrate at the other 
two sites. This is in agreement with the location of major S0« and 
NO emission sources. An additional factor involving Pb and Ca* 
was observed at two sites. This is interpreted to represent the 
influence of local s o i l or road dust. These results account for 
about 87 to 91 percent of the total variance in the original data 
set. The possible spurious negative correlations between seasalt 
elements and sulfate are flagged to note the possible influence of 
closure. 

Since the PCA and cluster analysis results were similar for the 
three sites and since one emission source has been suggested (12) as 
the source of many of the species detected in Western Washington 
rain, an analysis of the regional similarities in composition was 
appropriate. 

SIMCA modeling was utili z e d to determine the separability of 
the samples collected at the three different sites. The results 
presented in Table IV indicate the model cannot separate the samples 
from the West Seattle and Maple Leaf sites. Since both of these 
sites are located downwind of the major regional emission sources 
and experience similar meteorology their rainwater composition is 
similar. The Tolt reservoir site is separated from the Seattle 
sites with 79 percent of the samples collected there correctly 
classified by the SIMCA model. This site is believed to be 
influenced by the same emission sources as the other two sites but 
experiences different meteorological conditions (primarily longer 
transport times and more frequent and larger quantity of rainfall) 
due to i t s location in the foothills of the Cascade Mountains 
(elevation 550 meters). Considering the uncertainty in the reported 
concentrations (see Table VII) and the similar air pollution 
emission sources the SIMCA results are reasonable. 

The f i n a l step in the analysis was ut i l i z a t i o n of PLS to exam­
ine the correlated variance of the features between different sites. 
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Table I: West Seattle (fractional concentrations) 

Varimax Rotation of Principal Factor Pattern 

Specie a l a2 
Factor Loadings 

a3 a4 a5 a6 

NH. 4 .610 

N03 .625 

CI -.460** 

SO, 4 .573** .486 

As .716 

Cd • 570 

Cu .925 

Pb .464 .468 

Na -.455** 

Mg -.469** 
* 

Ca .731 

H .890 

Percent of 
Total 
Variance 19.3 18.8 13.8 12.6 9.5 8.8 

*Corrected for seasalt based on chlorinity ratio. 

**These loadings are believed to be r e a l i s t i c although a potential 
closure problem exists (see text). 
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Table II: Maple Leaf (fractional concentrations) 

Varimax Rotation of principal factor pattern 

Specie a l a2 
Factor Loadings 

a3 a4 a5 a6 

NH, 4 .634 

N03 .40

CI -.481** 
* 

SO. 
4 

.534** 

As .320 

Cd .910 

Cu .834 

Pb .776 .373 

Na -.450** 

Mg -.302** 
* 

Ca .369 .413 

H .433** -.433 

Percent of 
Total 
Variance 26.7 15.9 14.9 10.9 10.4 8.8 

*Corrected for seasalt based on chlorinity ratio. 

**These loadings are believed to be r e a l i s t i c although a potential 
closure problem exists (see text). 
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Table III: Tolt Reservoir (fractional concentrations) 

Varimax Rotation of Principal factor patterns 

Factor Loadings 

Specie a l a2 a 3 a 4 a 5 a6 

NH. 4 .607 

N03 .568 .365 

CI .392** -.622 

SO. 4 -.602** .363 

As .930 

Cd .688 .332 

Cu .624 

Pb .605 .355 

Na .456** 

Mg .533** 
* 

Ca .663 

H -.378** .500 

Percent of 
Total 
Variance 19.7 17.8 13.7 13.3 12.1 9.1 

*Corrected for seasalt based on chlorinity ratio. 

**These loadings are believed to be r e a l i s t i c although a potential 
closure problem exists (see text). 
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Table IV: SIMCA results, classification matrix for fractional 
concentrations at three sites. 

West Seattle Maple Leaf Tolt River 

West 19 7 11 
Seattle 51% correct 

Maple 20 23 8 
Leaf 45% correct 

Tolt 4 3 26 
79% correct 
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Any regional influence on rainwater composition would be expected to 
affect a l l three sites reported here. A PLS two block model (9) was 
used to predict the variance in rainwater composition at one site 
from the variance in rainwater composition at an upwind site. 

PLS results are presented in Tables V and VI. Loadings greater 
than 0.3 have been underlined. Loadings which may be influenced by 
closure are flagged. The regression of Maple Leaf composition 
(fractional) on West Seattle composition reveals four components: 

la) Hydrogen ion, lead, sulfate, nitrate (positive correla­
tion); 

lb) Sodium (negative correlation); 
2a) Arsenic, cadmium, lead (positive correlation); 
2b) Nitrate (negative correlation); 
3) Sodium, magnesium, chloride, ammonium; 
4) Cadmium, copper. 
The f i r s t three components suggest regional sources of: acidic 

anthropogenic aerosol, the marker elements of a copper smelter, and 
seasalt, respectively. Th
component three do not provid
emission or meteorological source of variability. The negative 
correlation of nitrate with component two is consistent with 
separate influences of the copper smelter and automobile emissions. 

The regression of the Tolt River rainwater composition on Maple 
Leaf data indicated four components: 

la) Sodium, magnesium, chloride (negative correlation); 
lb) Hydrogen ion, sulfate lead (positive correlation); 
2) Arsenic, cadmium, lead; 
3) Copper, lead 
4a) Sulfate, magnesium (negative correlation) 
4b) Ammonium (positive correlation) 
Three components are similar to the results for the West 

Seattle-Maple Leaf PLS model except that the acid aerosol component 
no longer has high a loading from nitrate. This specie is 
ordinarily associated with automobile emissions. The Tolt site is 
remote enough that auto emissions are not as important an influence 
on the va r i a b i l i t y in rainwater composition as in Seattle. The 
fourth component for this PLS model might represent emissions from a 
cement plant which does not influence the West Seattle site. The 
s o i l factor is apparently local in nature since i t appears in the 
PCA results but not the PLS results. 

With emission source chemical signatures and corresponding 
aerosol or rainwater sample measurements PLS can be used to 
calculate a chemical element mass balance (CEB). Exact emission 
profiles for the copper smelter and for a power plant located 
further upwind were not available for calculation of source 
contributions to Western Washington rainwater composition. This 
type of calculation is more d i f f i c u l t for rainwater than for aerosol 
samples due to atmospheric gas to particle conversion of sulfur and 
nitrogen species and due to variations in scavenging efficiencies 
among species. Gatz (14) has applied the CEB to rainwater samples 
and discussed the effect of variable solubility on the evaluation of 
the s o i l or road dust factor. 

Table VII presents data for Maple Leaf rainwater collected in 
two co-located samplers operated for 16 weeks for the purpose of 
determining experimental uncertainty. These data reveal that Cu, 
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Table VII: Sampling and analysis precision for co-located rain 
samplers of the Maple Leaf site (units • ppm unless 
indicated) 

Species Mean (1) Absolute Error (2)* (2)/(l) Ν 

NH. -N 4 0.30 0.05 .15 32 

N03-N 0.45 0.07 .16 32 

CI 1.04 

SO, 4 3.67 0.81 .22 32 

As(ppb) 7.18 1.94 .27 20 

Cd(ppb) 0.65 0.74 1.15 26 

Cu(ppb) 7.97 5.66 .71 32 

Pb(ppb) 17.3 3.73 .22 30 

Zn(ppb) 17.5 7.14 .41 26 

Κ 0.13 0.08 .66 32 

Na 0.68 0.08 .12 30 

Mg 0.10 0.02 .15 30 

Ca 0.26 0.04 .16 30 

*The standard deviation was calculated assuming that the average of 
each co-located sample pair was the pair's true value. Random 
error was assumed. N/2 degrees of freedom were used for the N/2 
sample pairs since no overall mean for the data set was calculated. 
The absolute error i s defined as this standard deviation of paired 
sample collections for a 16 week period. The data for the entire 
52 week sampling period have been reported elsewhere (10). 
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Cd, Κ and Zn are not precisely determined. Previously reported (13) 
results for identical s p l i t samples indicates that most of this 
experimental error was due to analytical imprecision rather than 
collection and handling. Many of the samples were near the 
detection limit for the five trace metals (As, Cd, Cu, Pb, Zn). To 
determine the effect of these measurement errors the PCA was 
repeated with uncertainty scaled data. (The data standard deviation 
used in autoscaling was replaced with the measurement absolute 
error.) 

The effect of including the measured analytical and sampling 
errors in the data scaling and PCA was to s p l i t factors consisting 
of several trace metals (which had higher uncertainties than the 
other species). In many cases the error weighted PCA indicate 
primarily single features such as arsenic, cadmium, or copper 
loading on a component. This i s consistent with a source of 
variance in the data set which is associated with random measurement 
variations rather than emission sources or meteorological processes
This emphasizes the importanc
analytical techniques fo

Conclusions 

The four techniques (PCA, hierarchial clustering, SIMCA, and PLS) 
are complementary in resolving precipitation chemistry data. 
Interpretation of these results allows a hypothesis as to what 
factors influence precipitation chemistry in Western Washington. 
Since the choice of which species to chemically analyze is 
subjective, other factors may be undetected due to lack of 
measurement. These results indicate the presence of seasalt, acidic 
sulfate and nitrate aerosol, road or s o i l dust, emission of metals 
from a copper smelter located to the southwest, and the occurrence 
of rain accompanied by strong southwesterly winds. These results 
are consistent with previous work (15). Further identification of 
meteorological influences on composition is limited by the weekly 
sampling period which results in a variety of wind and rain 
patterns for each sampling period. 

Although the measurement uncertainties limit the conclusions 
which can be drawn from these results, the data set proved useful 
for the determination of general influences on rainwater composition 
in the Seattle area and for the demonstration of the application of 
these exploratory data analysis techniques. Current efforts to 
collect and analyze aerosol and rainwater samples over meteorologi­
cally appropriate time scales with precise analytical techniques are 
expected to provide better resolution of the factors controlling the 
composition of rainwater. 
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Multivariate Analysis of Electron Microprobe­
-Energy Dispersive X-ray Chemical Element Spectra for 
Quantitative Mineralogical Analysis of Oil Shales 

Lawrence E. Wangen, Eugene J. Peterson, William B. Hutchinson, and 
Leonard S. Levinson 

Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 

Methods for determinin
environmental sample
chemical element data are under investigation. Major 
elements are determined by simultaneous analysis of the 
energy dispersive spectra from an electron microprobe 
system. Elemental data and size are obtained for 1000 
locations on a single shale sample. The elemental data 
are analyzed by clustering methods to determine inherent 
sample groups and to produce sample subsets containing 
fewer mineral components. These subsets are analyzed by 
target transformation factor analysis to determine (1) 
the number of significant mineral components; (2) the 
physically meaningful mineral component vectors; (3) the 
contributions of each mineral component to the elemental 
concentrations of each sample location; (4) the quantity 
of each mineral component at each sample location; and 
(5) the mineral composition of the entire sample. X-ray 
diffraction data and x-ray intensities (from energy 
dispersive analysis) of elements in pure minerals known 
to occur in oil shale aid in interpreting mineral compo­
nent vectors. An overview of the method will be 
presented with results of its application to a raw oil 
shale sample. 

Quantitative determination of the major and minor minerals in 
geological materials is commonly attempted by x-ray diffraction 
(XRD) techniques. Mineralogists use a variety of sophisticated and 
often tedious procedures to obtain semiquantitative estimates of the 
minerals in a solid sample. The mineralogist knows that XRD inten­
sities depend on the quantity of each mineral component in the 
sample even through expressions for conversion of signal intensity 
to quantitative analysis often are unknown or d i f f i c u l t to deter­
mine. Serious d i f f i c u l t i e s caused by variables such as particle 
size, c r y s t a l l i n i t y , and orientation make quantification of many 
sample types impractical. Because of a lack of suitable standards, 
these d i f f i c u l t i e s are particularly manifest for clay minerals. 
Nevertheless, XRD remains the most generally used method for quan-
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tifying the mineral components of solid geological materials, 
probably because i t is the best method for qualitative i d e n t i f i ­
cation of minerals in complex mixtures. 

Recently, methods for quantitatively determining the chemical 
element composition of solid materials by x-ray emission spectros­
copy using the electron microprobe have become available. A signif­
icant advantage of the electron microprobe, compared with methods 
for bulk analysis, is i t s capability for rapid analysis of many 
different micron-size areas of a solid sample. Thus, in a rela­
tively short time, we can obtain several hundred quantitative 
analyses of the chemical element content of a solid sample. These 
analyses usually w i l l be different because sample homogeneity is 
absent on the micron level. Thus, each chemical analysis is a 
linear sum of the chemical elements in the subset of minerals 
present at that location. Generally, we expect the number of 
minerals present in a micron-size spot to be less than the total 
number of minerals in the bulk sample. 

Recent work reporte
tent of coals based on th
composition of discrete particles. (1,2) Each particle is assumed 
to contain only one mineral component. Possible ambiguities in 
qualitative identification of discrete mineral particles can be 
eliminated by XRD analyses of the bulk material to identify the 
minerals present. For most geological materials, such separations 
are not readily obtainable. Thus, this method is limited to materi­
als that can be dispersed into particles composed of single 
minerals· 

During recent years, multivariate data analysis methods for 
determining the number of components in mixtures that are linear 
sums of the components have been developed. (3-5) If the number of 
components in a mixture can be identified, methods are av a i l ­
able for qualitatively identifying them and for determining the com­
position of each component. These often involve computer searching 
of possible compositions to find physically meaningful ones. Alter­
natively, investigators can guess compositions based on knowledge of 
the system under study and determine i f these guessed components can 
explain the observed data. These multivariate methods are based on 
variations of factor analysis and are identified in the literature 
by different terms, such as target transformation factor analysis 
(TTFA), (3) Q-mode factor analysis, (4) or multicomponent curve 
resolution. (3) A recent paper by Roscoe et a l . applied this method 
to quantitative determination of mineral matter in coals using only 
the chemical element concentrations. (6) Their results compared 
favorably with results concerning mineral content determined inde­
pendently by XRD analyses. 

The purpose of this paper is to describe procedures under 
development for determining the quantitative mineralogical compo­
sition of complex geological materials. The approach consists of 
the following: 
1. quantitative chemical element analysis at several hundred sample 
locations on a solid surface by electron microprobe x-ray emission 
spectroscopy, 
2. assignment of each sample location to one of several clusters 
based on chemical element composition using a multivariate data 
analysis method called cluster analysis, 
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3. determination of the number of mineral components in each spot 
and the composition of each component by TTFA, 
4. determination of the fractional contribution of each mineral 
component to each spot by multiple regression, and 
5. determination of bulk mineralogical composition by summation 
over a l l spots. 

Identification of major and minor components is verified by 
qualitative XRD analysis or other procedures. 

Methods 

Experimental Procedure. Oil shale is a fine-grained sedimentary 
rock that contains an organic material known as kerogen. The Green 
River formation o i l shales underlie approximately 16,000 miles of 
the tri-state area of Colorado, Utah, and Wyoming. The sample used 
in this study was obtained from core material recovered from the 
Piceance Creek basin in northwest Colorado  The mineralogy of this 
raw shale sample is typica
determination of the mineralog

Table I. Qualitative Mineralogical Analysis of Oil Shale by 
X-Ray Diffraction 

or-Quartz Strong Orthoclase V Weak 
I l l i t e V Weak Albite Medium 
Dolomite Medium Pyrite Trace 
Dawsonite Weak Gypsum Trace 
Kaolinite Trace 

Usually, bulk samples are crushed to less than 10 mm and s p l i t 
to obtain workable quantities of material. Fractions of these are 
crushed again so the rock passes a 20 mesh sieve and then is ground 
to -200 mesh. Portions of this material are taken for XRD and 
electron microprobe energy dispersive x-ray emission (EDX) analysis. 
Samples for EDX probe analysis are made into 100-mg pellets at 2000 
psi. Before analysis, the pellets are coated with 100 to 200 
angstroms of carbon. 

EDX analysis is accomplished with a Cameca MBX electron micro-
probe with Tracor Northern automation and an energy dispersive x-ray 
analyzer. A computer program has been written that w i l l perform up 
to 1000 analyses for 13 elements in approximately 2 h. The results 
are stored on floppy disks and can be transferred to main frame 
computers where multivariate analysis can be performed. The ele­
ments monitored during each analysis include sodium, magnesium, 
aluminum, si l i c o n , phosphorus, sulfur, chlorine, potassium, calcium, 
titanium, manganese, iron, and copper. Detection limits for the 
elements analyzed ranged from 0.1 wt% for sili c o n to 1.0 wt% for 
copper. Each analysis was run by using 15-keV beam energy, a 5-na 
beam current, a 0.3-μιη beam diameter, and 4-s collection time. The 
results of each analysis are output as intensity ratios to pure 
element standards that are first-order approximations of the concen-
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tration for a given element. Seventeen mineral standards were ana­
lyzed to determine the accuracy and precision of the method. The 
accuracy ranged from 10 to 20 r e l % , whereas the precision on major 
constituents was about 2 r e l % . Preliminary work with quantitative 
correction procedures has predicted the accuracy to be about 5 r e l % . 
Future work w i l l include corrections to the intensity ratios to make 
the results more quantitative. 

Multivariate Data Analysis. After determining the chemical element 
composition for 10 to 12 elements of a complex geological sample at 
about 1000 locations, we have a 1000 X 10 data matrix. Because we 
have been investigating an o i l shale sample, each of these 1000 
locations can contain kerogen. The amount of kerogen at each loca­
tion w i l l not usually be the same. Thus, because carbon, hydrogen, 
and oxygen are not measured, the element concentrations do not sum 
to a constant value for each sample. For this reason, the chemical 
element concentrations for each sample location are normalized by 
the following procedure

x ' i k = W k x i k < » 
where X̂ , is the relative concentration from the EDX analysis of 
element κ in sample i , and the sum is over a l l determined elements. 
After this normalization, the chemical element values for each 
sample sum to 1.0. 

NV 
Σ χ = 1.0 for a l l i (2) 
k=l l i c 

where for convenience we drop the prime. The main effect of this 
procedure is to remove differences in chemical element intensity 
caused by variations in kerogen or organic content. 

Cluster analysis on samples is accomplished by using the Κ 
means method incorporated into BMDP. (_7) This method finds the 
number of clusters requested by the investigator by using the means 
centering method. (8) Successively increasing numbers of clusters 
can be requested to determine the robustness of clusters. Samples 
that remain in the same cluster while increasing numbers of clusters 
are formed are thought to be part of a robust cluster. 

The Κ means algorithm in BMDP uses the Euclidian distance as a 
measure of similarity between samples. A number of data standardi­
zations are available that give the effect of calculating the dis­
tance using original concentrations, mean-centered concentrations, 
concentrations standardized by variance, or concentrations mean 
centered and standardized by variance. Different methods of stan­
dardization were investigated; however, using the raw data with no 
standardization gave the best results. This is believed to derive 
from the importance of composition ratios such as for calcium and 
magnesium in dolomite, iron and sulfur in pyrite, and aluminum, 
si l i c o n , and potassium i n i l l i t e . 

In this research, the purpose of the cluster analysis is to 
obtain groupings of samples with compositions similar to specific 
minerals or with only a subset of a l l the minerals in the bulk 
sample. This is necessary in most geological samples in order to 
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reduce the mathematical rank of the data matrix to a value smaller 
than the number of chemical elements determined. When this is 
accomplished, i t becomes mathematically possible to determine the 
true number of mineral components in each cluster. In contrast, i f 
a set of samples contains more mineral components than determined 
chemical elements, a physically meaningful mathematical solution is 
not possible because the rank of a matrix cannot be larger than i t s 
smallest dimension. 

After allocating sample locations to specific clusters, each 
cluster is subjected to TTFA, a method discussed at length in the 
monograph by Malinowsky and Howery (9) and more briefly by Hopke and 
colleagues. (6,10-11) The latter have applied the method to source 
characterization of air particulate matter and to coal mineralogy. 
(6,10) Their computer programs for performing TTFA, FANTASIA, (11) 
were used in this research. Most of the following discussion is 
based on the work of these researchers. 

The basic model of the factor analysis method as applied here 
assumes that the x-ray emissio
is a linear sum of the quantit
minerals present at that sample location: 

X i k - 1?1 c k l f l i ( 3 ) 

where x., is the same as in Equation 1, c ^ i s t l i e average 
composition of chemical element k in mineral component 1, and f is 
the mass fraction of mineral component 1 in sample i . As an example 
of Equation 3, the amount of aluminum in a sample that is a mixture 
of the minerals kaolinite, albite, and gibbsite would be 

XA1 = cAl,kao fkao + cAl,alb f a l b + CAl,gib fgib ( 4 ) 

A similar expression could be written for s i l i c o n , potassium, or 
sodium. If we have NS = 1000 samples in which NV = 10 chemical 
elements have been measured, our model would contain 10,000 
expressions, as in Equation 4, one for each element per sample. In 
matrix notation, these relations are 

X - F C (5) 

where (3 is the NCxNV matrix of average chemical compositions of each 
of the NC minerals, _F is the NSxNC matrix of fractional composi­
tions, and X is the NSxNV matrix of measured chemical element 
compositions in the NS samples. For our problem, X contains the 
x-ray emission intensities of the measured elements at each of the 
1000 locations on the sample, expressed as relative concentrations. 

The objectives of TTFA are 
1. to determine NC, the number of mineral components that make up 
the set of samples, 
2. to identify the average elemental compositions of each mineral 
component contributing to the set of samples, 
3. to determine the mass fractions of each mineral component in 
each sample location, and 
4. to sum over a l l samples and determine the quantitative minera­
logical composition of the original solid material. 
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The f i r s t step in the TTFA procedure involves a principal 
components factor analysis of the data matrix. This step is accom­
plished by an eigenanalysis (or characteristic value analysis) of 
the product moment of the data (X) matrix normalized and weighted as 
desired by the investigator. No weighting or mean subtraction is 
referred to as covariance about the origin, sometimes referred to as 
the scatter matrix. Mean subtraction results in a standard covari­
ance matrix. Weighting by the square root of reciprocal variance is 
correlation about the origin, and mean subtraction plus this 
weighting is standard correlation. To date, most of our work has 
used weighting by the square root of reciprocal variance, which is 
the method advocated by Hopke and colleagues. (6,10-11) This pro­
cedure preserves the relative concentration of the chemical element 
data expressed in standard deviation units. Other methods of 
weighting and data expression might be more appropriate, depending 
on the nature of the problem. 

Because of error, eigenanalysis of real samples always w i l l 
produce NV eigenvalues an
assume that a subset of
for a l l the important data variation not caused by random errors or 
unimportant (for present purposes) components. Several tests can be 
applied to determine the correct number of eigenvectors. (12) In 
our case, we can use as a r e a l i s t i c upper limit the number of sig­
nificant mineral phases identified by XRD i f such analysis has been 
performed. In practice, real samples seldom have a definable number 
of mineral phases; rather they have a number of easily identifiable 
major and minor minerals, plus numerous trace mineral components 
that may or may not be identified. The investigator must use some 
judgment in deciding the value of NC. In this work, NC is defined 
according to the number of components needed to reproduce the chemi­
cal element data for those elements making up the dominant mineral 
phases. Such a procedure satisfies our principal purpose of quanti­
fying major and minor mineral components. 

After finding NC, we must determine the composition of each 
mineral. It is very helpful at this point to have a qualitative 
mineralogical analysis, such as XRD, to provide i n i t i a l estimates of 
compositions. In addition, libraries of mineral compositions are 
extremely useful. Methods based on searching the original data 
matrix for candidate minerals also are helpful and in some instances 
may provide the best compositions for real samples. 

Candidate mineral compositions or test vectors are tested by 
linearly rotating the NC eigenvectors towards a test vector by using 
a least squares procedure (3) and determining i f the test vector 
could possibly l i e in the vector space defined by the NC eigen­
vectors. In this way, suspected minerals are kept or rejected from 
further consideration. (From this step of the analysis, TTFA 
derives i t s name.) When NC mineral compositions have been deter­
mined that adequately reproduce the original data and are consistent 
with other information, such as XRD or infrared analysis, this 
aspect of TTFA is finished. At this point, we have successfully 
determined the matrix C of Equation 5. 

After C is determined, F_ is obtained by proper manipulation of 
Equation 5. Finally, after proper scaling of the A and J? matrices 
and accounting for any sample normalization, such as in Equation 1, 
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we can sum over a l l samples to obtain a quantitative estimate of the 
mineralogical composition of our original solid sample. 

Results and Discussion 

This work is motivated by a lack of techniques for quantifying the 
mineral components in complex environmental solids. Programmatic 
interest derives from research in the environmental chemistry of raw 
and retorted o i l shales from the Piceance Basin in Colorado. For 
this reason, we chose to do exploratory research on a particular 
sample of raw shale. Previously XRD analysis had been performed on 
this sample. The XRD results are shown in Table I. XRD line inten­
si t i e s for the minerals often are used to provide a rough semi­
quantitative estimate of amount present. 

Cluster Analysis. Cluster analysis using BMDP*s PKM method was 
performed on the data with several methods of data transformation, 
normalization, and variabl
results for these differen
similar. The method f i n a l l y selected i s that discussed above, i.e., 
normalization of each sample, so the concentrations sum to unity and 
use of Euclidian distances with no standardization of variables as a 
measure of sample similarity. 

A number of clusters from 4 through 14 were formed succes­
sively, each time starting from one cluster containing a l l samples. 
The clusters at each level and the progression of cluster formation 
as new clusters were formed at each successive level through 10 
clusters are shown in Figure 1 as a tree diagram. Clusters that 
maintain their identity as the number of clusters increases are 
thought to form "robust" clusters. For example, cluster five (18 
samples) remained intact, as the number of clusters increased from 
5 to 14. At each level, a subset of samples breaks off from one 
bigger cluster to form a new cluster. The farther down the tree 
this occurs, the more similar is the new cluster to the one from 
which i t originated. Average normalized elemental concentrations 
for each cluster at 10 clusters are given in Table II. We chose to 
proceed with 10 clusters. The XRD results together with the normal­
ized concentrations in Table II indicate the dominant minerals 
li k e l y to be present in each cluster. Subsequent TTFA analysis was 
performed separately on each of these 10 clusters. 

TTFA. The TTFA steps w i l l be illustrated for the f i r s t two clusters 
in Figure 1. These correspond to clusters one and two in Table II. 
As evident in Figure 1, these two clusters are quite similar. Based 
on the relative elemental concentrations in Table II, we refer to 
these as the silico n and albite clusters. 

Real geological samples rarely exhibit a specific number of 
mineral components. Such samples are composed of a multitude of 
minerals that are qualitatively referred to as major, minor, and 
trace components. The sensitivity of the particular analytical 
method limits our a b i l i t y to resolve these minerals. Here we deter­
mine the number of mineral components (NC) from the eigenanalysis of 
the raw data matrix. The raw data matrix is approximated by a 
successively increasing number of eigenvectors. When this approxi­
mated data matrix is within the expected uncertainty of the data, we 
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have an estimate of the number of mineral components making up the 
samples. Various measures for estimating NC are discussed in 
Reference 12. In practice, the value of NC i s ambiguous and several 
values can be tested; the investigator must use sc i e n t i f i c judgment. 
At this stage of the research, we are using an average error of 10% 
for the reproduced elemental concentrations as an i n i t i a l guess for 
estimating the maximum number of components in each cluster and then 
testing candidate mineral vectors, assuming several values of NC 
between two or three and the number required to give an average 
error of 10%. Table III for the albite cluster (cluster two) shows 
FANTASIA'S summary printout, which is used to estimate NC. (11) 
None of the indicators in the table provide a definitive value for 
NC. The eigenvalue shows the amount of total variance explained and 
so is heavily weighted in favor of elements present in the samples 
at high concentrations, i.e., si l i c o n for this case. Thus, i f 
concentrations of a l l elements are to be successfully approximated, 
use of the eigenvalue as a measure of the number of components i s no 
good. Using the 10% averag
four for the albite cluster
components in the other nine clusters were determined by a similar 
rationale. 

We have obtained EDX relative concentrations for numerous 
naturally occurring "pure" minerals. These are used as test vectors 
in target transformation to determine i f any of the eigenvectors can 
be linearly rotated to f i t a test vector. In addition, these "pure" 
minerals are used to aid in searching the data matrix for composi­
tions that most closely approximate them. Such elemental concentra­
tions of minerals from the geological sample may be a better e s t i ­
mate of those making up the sample than are mineral standards. 
Several elemental concentrations of such mineral standards are 
listed in Table IV. These vectors are normalized to a sum of unity 
to be consistent with the normalization of the data samples. A 
least squares minimization procedure is used to determine the linear 
transformation (rotation) that w i l l best transform one of the eigen­
vectors to the test vector. (13) We compare the new test vector 
predicted by this transformation with the original to evaluate 
whether the original candidate mineral is one of the components. 
This process is repeated for a l l candidate test vectors at any 
desired value of NC. In this way, different numbers of mineral 
components can be investigated to determine a set of mineral com­
ponents that reproduces adequately the original data. 

The s i l i c o n cluster contained 60 samples and a normalized 
concentration of 92% s i l i c o n . This cluster was estimated to be 
entirely quartz. Only the quartz test vector provided an adequate 
f i t upon rotation of one or two eigenvectors. 

A more complex example is provided by cluster two, the albite 
cluster containing mainly sodium, aluminum, and s i l i c o n . Considera­
tion of the number of vectors from the eigenanalysis in Table III 
suggested the presence of four components. Target testing identi­
fied these as albite, quartz, orthoclase, and perhaps gypsum. The 
f i t of these four vectors is shown in Table V. Normalized elemental 
concentrations less than about 0.01 are considered unreliable 
because they are too close to the noise level. Thus, for example, 
vector one, identified as albite, contains only sodium, aluminum, 
and s i l i c o n ; vector two, identified as quartz, appears to have a 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



4. WANGEN ET AL. Mineralogical Analysis of Oil Shales 63 

Table I I I . P r i n c i p a l Components A n a l y s i s of C l u s t e r 2 ( A l b i t e C l u s t e r ) 

Factor Eigenvalue RMS 

1 l.le+2 9.9e-4 
2 1.2e+0 6.2e-4 
3 3.2e-l 4.8e-4 
4 2.3e-l 3.4e-4 
5 9.7e-2 2.7e-4 
6 6.7e-2 2.0e-4 
7 3.8e-2 1.4e-4 
8 1.7e-2 l.le-
9 1.7e-2 6.8e-5 

Chi--Square Exner 
Average 
Error 

1. .2e-3 0.15 29.2 
5, .3e-4 0.09 17.7 
3, .6e-4 0.07 15.8 
2. .2e-4 0.05 11.1 
1. .6e-4 0.04 7.2 
1. ,le-4 0.03 4.8 
7. ,9e-5 0.02 3.0 

5. 4e-5 0.01 0.5 

Table IV. Normalized EM-EDX Spectra of Some "Pure" Minerals 

Na tfe Al Si S Κ Ca Fe 
Quartz 1.00 

Orthoclase 0.095 0.620 0.285 

I l l i t e 0.077 0.140 0.635 0.148 

Albite 0.080 0.161 0.759 

Kaolinite 0.028 0.472 0.501 

Montmorillonite 0.179 0.727 0.095 

Dolomite 0.243 0.736 0.020 

Pyrite 0.506 0.494 

Gypsum 0.125 0.415 0.460 
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small amount of aluminum and perhaps some Iron and sulfur associated 
with i t . However, since XRD verifies the presence of quartz as a 
major constituent, we accept the vector. Orthoclase also is a good 
f i t as shown by Table V. For gypsum, there is considerable more 
uncertainty. However, i t s inclusion added only a small contribution 
to the total mass of gypsum. We used these four minerals with the 
compositions of the pure minerals listed in Table IV to reproduce 
the data for a l l 107 samples of the albite cluster as per Equation 
5. Results for this data reproduction are in Table VI. (The small 
discrepancies between observed concentrations in Table VI and Table 
II are caused by rounding errors.) On the average, a l l elements 
were well approximated by these four components except sulfur, iron, 
and calcium. This suggests that the gypsum component used probably 
represents noise. The coefficient of variation for sulfur in this 
cluster was 96% and that for iron was 85%. Thus, these elements are 
present at very low concentrations and have large standard devia­
tions in this cluster, so we chose to ignore them because they may 
constitute noise in thes
w i l l be to obtain bette
analyses of geological samples by the electron probe EDX method.) 

Having obtained a set of mineral components that satisfactorily 
reproduces the data, we have defined the (] matrix of Equation 5. 
Given X and C9 Equation 5 i s then used to solve for For the 
albite cluster with 107 samples and 4 mineral components, F_ is 107 X 
4 matrix containing the mass fractions of each mineral component in 
each sample. Because these mass fractions sum to 1.0 for each 
sample, assuming we are accounting for a l l the mineral matter, we 
solve an overdetermined set of simultaneous equations of the form 

1.0 - I s x f u (6) 

by least squares regression methods, where 1 is summed over 
the mineral components in sample i (albite, quartz, orthoclase, and 
gypsum for cluster two). There is a similar equation for each of 
the 107 samples. These scaling values are applied to each f from 
Equation 5 to give the contribution of each mineral component to 
each sample. A sum over a l l samples (i) in each cluster of the form 

f i • i 8 j f l i w i ( 7 ) 

gives the mass fraction f of mineral 1 in a particular cluster. As 
Equation 7 indicates, these are corrected by w. to account for the 
variable amount of mineral matter in each sample. This corrects for 
the normalization of Equation 1; that i s , 

where x., are the original unnormalized EDX intensity ratios. This 
assumes that the sum of the measured inorganic components is approx­
imately the same in the absence of organic matter. This is 
obviously a minor shortcoming of the method, and better means of 
quantifying the inorganic contribution are being implemented. 

The f for each cluster are weighted by the number of samples 
in the cluster, Equation 9, and the fi n a l estimate for the mass 
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Table V. Best F i t Vectors from Testing Mineral Component 
Vectors in Table IV 

Vector 1 Vector 2 Vector 3 Vector 4 
Element Albite Quartz Orthoclase Gypsum 

Na 7.7e-2 -6.6e-2 
Mg 7.6e-2 
Al 1.6e-l 6.8e-2 l.le-1 1.5e-l 
Si 7.6e-l 9.8e-l 6.2e-l 2.5e-l 
S 4.9e-2 2.5e-2 
CI 
Κ 2.5e-
Ca 4.1e-2 4.1e-l 
Ti 
Fe 8.2e-2 -6.2e-2 

Table VI. Average Elemental Contributions of the Mineral Components 
Used to Reproduce the Data in the Albite Cluster 

Total 
Albite Quartz Ortho Gypsum Predicted Observed % Error 

Na 0.29e-l 0.29e-l 0.17e-l 6.4 

Mg 0.15e-l 0.15e-l 0.11e-l 15.9 

Al 0.59e-l 0.12e-l 0.72e-l 0.78e-l 12.3 

Si 0.28e+0 0.38e+0 0.81e-l 0.74e+0 0.74e+0 0 

S 0.51e-l 0.51e-l 0.23e-l 99.0 

Cl 0.12e-2 0 

Κ 0.37e-l 0.37e-l 0.35e-l 4.4 

Ca 0.56e-l 0.56e-l 0.83e-l 45.9 

Ti 0.19e-2 0 

Fe 0.15e-l 0 
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fraction of each mineral component in the total sample is obtained 
by normalizing the sum of the mass fractions to unity, Equation 10. 

where Ν is the number of samples in cluster j and there is a similar 
equation for each mineral component 1. This fi n a l normalization is 

Our current estimate for the quantitative mineral composition 
of the entire o i l shale sample based on a l l 10 clusters is presented 
in Table VII. These estimates are consistent with the qualitative 
XRD results of Table I. Because they are subject to several sources 
of uncertainty, i t is impractical to assign error bounds at this 
time. These include uncertainty in values of chemical elements for 
test vectors, problems in identifying minor mineral components in 
the clusters, uncertainty in the relative concentrations of each 
element, and uncertainty in the organic content of each sample. 
Much of our future research in development of this method w i l l be 
aimed at overcoming these uncertainties. 

The application of multivariate data analysis to the interpre­
tation of chemical element spectra from an electron microprobe-
energy dispersive spectrometer is proving to be a useful method for 
quantifying mineral components in complex geological materials. The 
method involves the EDX analysis of the solid, cluster analysis of 
the chemical element spectra, TTFA followed by determining the 
fractional contribution of each mineral component to each analyzed 
area by multiple regression, and f i n a l l y determination of the bulk 
composition by summation over a l l analyzed areas. These techniques 
have been applied to an o i l shale solid, and the results are 
consistent with x-ray diffraction determination of the mineralogy. 
Future activities w i l l focus on the generation of a "pure" mineral 
spectral library, the determination of uncertainties in the composi­
tional results, the use of multivariate least squares methods to 
eliminate the multiple data analysis steps, and method validations. 

Results of these studies are very encouraging and indicate that 
a reasonably fast, accurate, and practical method for the quantita­
tive determination of minerals in complex solids can be achieved 
with this approach, particularly i f multivariate least squares curve 
f i t t i n g methods can be automated. 

= ? N. f 
J J 1 

(9) 

tl I 

(10) 

Summary 
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5 
Application of Pattern Recognition to High-Resolution 
Gas Chromatographic Data Obtained from an 
Environmental Survey 

John M. Hosenfeld and Karin M. Bauer 

Midwest Research Institute, Kansas City, MO 64110 

The application of pattern recognition to a 
complex chromatographic data base is described. Soil 
sample extracts were analyzed by high resolution gas 
chromatography/flame ionization detection (HRGC/FID). 
The peak retention times were converted to a peak in­
dex which was then examined by principal component 
analysis. Several linear combinations of the peaks 
were identified as factors which separated the sludge­
-treated and untreated garden soils. Vector of change 
plots were constructed that showed the effect of sludge 
treatment. This data interpretation was achieved with­
out prior knowledge of chromatogram peak identity for 
either compound class or type. 

In a typical environmental survey, a l i s t of target analytes is 
usually defined in the design phase of the study and prior to sample 
collection. These analytes may have been chosen through knowledge 
about the system being studied (1,2), through related environmental 
situations, or perhaps even by using the analytes currently in 
vogue, such as priority pollutants (3) or PCBs (4). Each of these 
approaches, although i t may meet the immediate needs of the study at 
hand, advances the knowledge of the environmental system being stud­
ied only to a limited extent. The use of predesignated analytes re­
stricts the information that can be obtained from the samples col­
lected. If indeed the study is designed so that the samples are 
collected in a s t a t i s t i c a l l y determined manner and yet only a small 
number of target compounds are included for analysis, then the re­
sults and probably the study conclusions w i l l reflect this narrow 
approach. 

An alternative approach is to analyze the samples using proce­
dures or instrumentation that w i l l give the maximum amount of data 
for each sample. For example, recent advances in atomic spectros­
copy, i.e., inductively coupled argon plasma emission spectroscopy 
(ICP-AES), allow 20 to 30 elements to be detected simultaneously. 

0097-6156/ 85/0292-0069506.00/ 0 
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Another means of greatly increasing the amount of data on the organic 
compounds present in samples is through the use of universal tech­
niques such as high resolution gas chromatography (5,6) combined with 
flame ionization detection (HRGC/FID). 

The problem is to sort through and retrieve information from 
the large amount of quantitative data produced with capillary chroma­
tography. After those peaks that contain the most information that 
describes the sample have been determined, directed and specific con­
firmation analysis by GC/MS may occur. 

In order to illustrate this concept, the use of pattern recog­
nition approach on gas chromatographic data w i l l be presented. This 
paper w i l l focus on an environmental survey of sewage sludge usage 
on home vegetable gardens. The analysis of the organic content of 
the soils collected on this survey was an opportunistic study since 
the original purpose was to monitor trace metal levels in the treated 
and untreated gardens. The addition of the HRGC/FID analysis w i l l 
hopefully add to the knowledge base. 

Experimental 

Soil samples were collected from 92 gardens as part of a nationwide 
survey of the usage of sewage sludge on home vegetable gardens. In 
each designated county, s o i l was collected from each of two garden 
types, i.e., sludge treated and untreated. Samples of sludge, when 
available, were also collected from the garden sites. 

In the laboratory, each s o i l sample (40 g) was transferred to a 
centrifuge bottle. Since the original purpose of the s o i l collec­
tion was to monitor specific organic compounds in the sludge-amended 
garden soils, a set of surrogate compounds was added to the s o i l 
prior to extraction to assess the extraction and cleanup recovery. 
The surrogate compounds were mono-, tetra-, octa-, deca-13C-PCBs, 
dg-naphthalene, 13C-PCP and 1 3C-phenol. The s o i l samples were dried 
with Na 2S0 4 (60 g) and then Soxhlet extracted with hexane: acetone 
(9:1) for 16 h. The extract was dried with sodium sulfate, concen­
trated, and s p l i t . While one portion was held for other analyses, 
the other portion was placed on a 3% deactivated s i l i c a gel column 
and eluted with increasing solvent polarity systems [hexane, f o l ­
lowed by methylene chloride :hexane (1:1), and then methylene 
chloride:acetone (95:5)]. The extracts were combined and reduced 
to 1 mL, s p l i t and two internal standards added (tetrafluorobiphenyl 
and di2 _chrysene). The extracts were chromatographed on a 15-m DB-5 
fused s i l i c a capillary column and detected with flame ionization 
(FID). Sludge samples were extracted according to the EPA sludge 
protocol (7) developed at Midwest Research Institute. 

The output from the FID was captured by a Nelson Chromatographic 
Data System and stored on floppy disks. The algorithm in the data 
system processed the raw chromatograms and stored the peak retention 
times and areas in data tables which were subsequently transferred 
to a Digital Equipment Corporation (DEC) 11/23+ for further process­
ing. A relative retention index (8,9) was developed on the internal 
standards added to each sample. An arbitrary chromatogram was chosen 
to act as a reference against which the other chromatograms would be 
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compared and the peak numbering system developed. This procedure 
consisted of lining up the two internal standards respectively across 
a l l chromatograms. Within a given chromatogram, each retention time 
(X) was transformed to obtain a retention time (Y) using the simple 
linear equation: 

such that 

and 

Y = aX + b (1) 

a S n + b = S r l (2) 

aS. 2 + b = S r 2 (3) 

where S and S 2 = retention times of the two internal 
standards in the reference chromatogram 

and S.- and S.9 =
1 1 tw

The system of equations 2 and 3 yields: 

the slope (a) 
Sr2 " S r l (4) 
S i 2 " S i l 

and „u · «. . ̂  S r l S i 2 " S r 2 S i l (5) the intercept (b) = - = 
b i 2 ' i l 

Thus, within each chromatogram, each retention time (X) was linearly 
transformed using Equations 1, 4 and 5 to obtain the adjusted reten­
tion time (Y). Next, the retention time of the f i r s t internal stan­
dard was renumbered as peak index 1. Peaks occurring prior to the 
f i r s t internal standard were deleted in each chromatogram because 
they were on the solvent peak. Using a 4-sec peak retention window, 
each retention time in subsequently adjusted chromatograms was num­
bered based on the window in which i t occurred. When two peaks in a 
given chromatogram were less than 4 sec apart and within the same 
window, the peaks were assumed to be unresolved and therefore summed 
(this happened 14 times out of a total of over 10,000 peaks in the 
entire data set). 

Pattern recognition, i.e., principal components analysis, was 
attempted on the data matrix of 92 chromatograms χ 364 peaks. How­
ever, the mathematical requirements of the Sta t i s t i c a l Analysis Sys­
tem (SAS) specify that the number of observations (chromatograms) be 
greater than the number of features (peaks) for matrix inversion 
computations. To solve this problem we considered (1) dividing the 
chromatogram into three or four sections containing an equal number 
of peaks or (2) considering sets of 91 randomly selected peaks in an 
iterative process. However, a significant drawback of these two ap­
proaches is that any interrelationships which may exist between dif­
ferent portions of the chromatogram are not taken into account. 
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An alternate approach (10) was to a r t i f i c i a l l y increase the 92 χ 
364 matrix to a 368 (4 χ 92 chromatograms) χ 364 (peaks) so that the 
matrix could be inverted and a l l 364 peaks considered simultaneously. 
This was done by replicating the original 92 observations and by 
slightly modifying the peak areas in each replicate (the area values 
were multiplied by a random number between 0.99 and 1.01). The en­
t i r e chromatogram was analyzed rather than portions of i t and thus 
the correlations between peaks were preserved. In the f i r s t pattern 
recognition step, a principal component analysis using SAS was per­
formed on the combined data set of 368 chromatograms with 364 peaks 
each. This procedure yielded 364 factors, with the f i r s t three ex­
plaining 16.2%, 10.5%, and 6.9% of the total variance, respectively. 
Within these three factors, those peaks with high loadings were kept 
until a maximum set of 91 peaks was retained, such that factor 1 
contributed 66 peaks, factor 2, 31 peaks and factor 3, 6 peaks. 
Then using these 91 peaks only, the original data set was reexamined 
by principal components analysis. Eigenvalues greater than one were 
plotted to determine how
varimax rotation, the facto

Results and Discussion 

Typical chromatograms of s o i l extracts are shown in Figure 1. It 
can be seen that the chromatograms are complex and that the sludge-
treated s o i l sample has a greater number of peaks (~ 150 vs. ~ 50) 
and higher detector response than the untreated s o i l sample. One 
might anticipate that there is a structure in the data set of treated 
and untreated soils and that this structure might be resolved by ap­
plication of pattern recognition techniques. 

The analysis of chromatographic data is usually performed on 
normalized chromatograms, which is an attempt to account for the mass 
injected. However, the closure of analytical data is a problem with 
normalized data which has been described elsewhere (11) . We examined 
our data for this problem by plotting the grand mean variation over 
a l l 368 peaks versus the standard deviations of these peaks. Clo­
sure did not occur in the unnormalized data. 

The plot of the decreasing sequence of eigenvalues of the 91 
principal components is shown in Figure 2. Components 1, 2 and 3, 
with eigenvalues of 42.7, 22.4 and 8.8, respectively, explained 
47.0%, 24.6% and 9.7% of the total variance, respectively, a total 
of 81.3%. The fourth component with an eigenvalue of 2.5 accounted 
for only 2.7% of the total variance, and thus only the f i r s t three 
principal components were selected to be further explored. (Note 
that only 9 of the 91 components had eigenvalues greater than 1.0, 
explaining together 92.3% of the total variance.) After varimax 
rotation, the eigenvalues of the f i r s t three components were only 
slightly changed to 42.1, 20.9 and 10.8, respectively; thus a strong 
f i r s t factor remains followed by two factors approximately half as 
important as their precedent. Next, within each factor, those fea­
tures (peak numbers) with loadings representing at least 2% (about 
twice the average of 1/91 · 100%) of the variance of this factor were 
kept and ordered with respect to these percentages. By this method, 
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Time (Minutes) 

Time {Minutes) 

Figure 1. Typical gas chromatograms of soil from an untreated garden (top) and sludge 
treated garden (bottom). Conditions: 15 m DB-5, 0.25 mm ID capillary column operated 
at 100 C (2 min) then programmed at 10 C/min to 310 C (7 min hold). 
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Figure 2. Plot of the eigenvalues of the correlation matrix. 
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Factor 1 was characterized by 25 peaks, each having about equal load­
ings (0.99 to 0.93 or equivalently 2.3% to 2.0% of the variance ac­
counted by this factor). The f i r s t plot in Figure 3 shows that these 
25 peaks are spread across the total peak range with a somewhat 
higher concentration of peaks toward the end of the range (276 to 
351). In contrast, Factor 2 contained 24 peaks with loadings rang­
ing from 0.97 to 0.71, representing proportions of variance of this 
factor from 4.5% to 2.4%. These 24 peaks were somewhat clustered 
between peak numbers 31 and 80, as shown in the second plot in Figure 
3. Factor 3 (3rd plot in Figure 3) is the most striking in compari­
son to the previous two factors. A small number (14 out of 91) of 
peaks account for 84.8% of the variance explained by this factor, 
with loadings ranging from 1.0 to 0.6 (equivalent to high percent 
variances ranging from 8.8 to 3.3%). Although these 14 peaks broadly 
cover the whole range of the original 400 peaks, a minor cluster oc­
curs in the 192 to 248 section. It is interesting to note that only 
one peak, number 161, is duplicated in any of the factors (2 and 3), 
thus underlining the orthogonalit
other. These loading varianc
structure may be present in the data set due to the above discussed 
dissimilarities. 

In order to determine the scope of the hidden structure, factor 
plots of the observations were made. A plot was made of the factor 
scores for each garden s o i l , i.e., sludge-treated (T) or untreated 
(U). No clear pattern emerged from these plots of the factor scores 
and so another approach was taken. The treated and untreated scores 
were replotted (Figure 4) with a letter code substituted for each 
county from which a s o i l sample was collected. However, these plots 
were only of minor use in providing insight into the data structure. 
From these factor plots of the observations, secondary plots were 
constructed to determine the effect of treating garden s o i l with 
sludge compared to untreated garden s o i l . These vectors of change 
plots are shown in Figures 5, 6, and 7. It is important to emphasize 
again that the treated and untreated s o i l sample came from at least 
two separate gardens within a county, i.e., no experimental design 
of adding sludge to untreated gardens occurred. Figure 5 presents 
the plot of factor 1 versus factor 2. The comparison of sludge to 
untreated soils M-Z, G-T, B-0, and A-N shows an equal and positive 
combination of factors 1 and 2. Site G-T is profoundly affected by 
sludge treatment, as evidenced by the large response in these two 
factors. Soils J-W, L-Y, K-X, E-R are negatively affected by factor 
2. In Figure 6, a similar effect is seen for soils G-T, A-N, and 
M-Z; however, site C-P is reversed from Figure 5 because of a strong 
contribution from factor 3. Sites D-Q, I-V, F-S have the same rever­
sal as site C-P. Sites E-R, K-X, and L-Y are strongly affected by a 
positive factor 3. Figure 7 shows changes similar to those occurring 
in Figure 6. It is apparent that the relationship among factors is 
3 > 2 > 1. However, i t is important to recognize that these eigen­
vector projections were made without knowledge about the class as­
signments of the individual soils. The resulting separation is 
therefore a strong indication of real differences between the two 
garden s o i l types in a given county. Similar vectors of change were 
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Figure 3. Plot of the features (peak numbers) compared to the 
loading variance percent for the f i r s t three factors. 
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seen in the principal components analysis of trace metal data from 
these same soils (12). These plots also showed the effect of sludge 
treatment on trace metal levels of garden soils as indicated by the 
vectors of change. 

Conclusions 

A means of abstracting the most relevant information from a chromato­
graphic data set has been presented. Principal components analysis 
has been shown to be a powerful technique for obtaining the structure 
hidden in a complex data set. The merits of this procedure are i t s 
usefulness in pointing out (1) the chromatographic peaks that require 
further compound identification and (2) the peaks that exhibit simi­
l a r i t y or dissimilarity, which lead to data set insight enhancement. 
Specific compound identification time using gas chromatograph/mass 
spectrometry may be minimized because the peaks causing the effect 
in the soils have been determined. This leads to less GC/MS identi­
fication time and thus possibl
ness of the approach, however
be verified when the compound identity of the peaks is known and this 
identity leads to an understanding of the effects of sludge treatment 
on garden soils. 
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6 
Quality Assurance Applications of Pattern Recognition 
to Human Monitoring Data 

Philip E. Robinson, Joseph J. Breen, and Janet C. Remmers 

Office of Toxic Substances, U.S. Environmental Protection Agency, 
Washington, D.C. 20460 

Principal Component Analysis (PCA) is performed 
on a human monitoring data base to assess its 
ability to identify relationships between variables 
and to assess the overall quality of the data. 
The analysis uncovers two unusual events that 
led to further investigation of the data. One, 
unusually high levels of chlordane related compounds 
were observed at one specific collection site. 
Two, a programming error is uncovered. Both events 
had gone unnoticed after conventional univariate 
statistical techniques were applied. These results 
illustrate the usefulness of PCA in the reduction 
of multi-dimensioned data bases to allow for the 
visual inspection of data in a two dimensional 
plot. 

Data have been collected since 1970 on the prevalence and levels 
of various chemicals in human adipose (fat) tissue. These data 
are stored on a mainframe computer and have undergone Troutine 1 

quality assurance/quality control checks using univariate s t a t i s t i c a l 
methods. Upon completion of the development of a new analysis 
f i l e , multivariate s t a t i s t i c a l techniques are applied to the 
data. The purpose of this analysis i s to determine the u t i l i t y 
of pattern recognition techniques in assessing the quality of 
the data and i t s ab i l i t y to assist in their interpretation. 

Background 

Under the Toxics Substances Control Act, the Environmental Protection 
Agency (EPA) i s mandated to gather data on the exposure of the 
general population to toxic substances. Toward this end, the 
Office of Toxic Substances within the EPA has undertaken several 
long term monitoring programs. These programs involve the collection 
of human tissue specimens from a st a t i s t i c a l l y representative 
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84 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

sample of the United States population and the subsequent chemical 
analysis for a select group of toxic substance residues and 
their metabolites. The data generated by these studies are 
used to establish the prevalence and levels of human exposure, 
to identify trends in this exposure, and to assess the effects 
of regulatory action on exposures to these chemicals. 

The National Human Adipose Tissue Survey (NHATS) (_1) i s 
an on-going program conducted annually since 1970. Human adipose 
tissue specimens are collected during either post-mortem examinations 
or elective surgical procedures at 40 locations across the conti­
nental United States. Demographic characteristics of each tissue 
donor are also reported. Since the program's inception, over 
20,000 specimens have been chemically analyzed at seven analytical 
laboratories. The adipose tissue specimens are chemically analyzed 
using a packed column gas chromotography/ electron capture detector 
method and the Mills Onley Gaither procedure (2). Data were 
gathered on 19 organochlorine compounds and PCBfs. A l i s t of 
the residues measured i

TABLE I. Chemical Residues Measured in Adipose Tissue 

The survey design used by NHATS i s based on a multi-stage 
selection process in which the f i r s t stage involves the random 
selection of a specified number of population centers (SMSAfs) 
from each geographical region of the country. At the second 
stage, a local medical examiner or pathologist from each SMSA 
is identified and asked to contribute tissue specimens according 
to demographic quotas based on age, race and sex. 

This study provides EPA with human monitoring data to assess 
the level of exposure of the general population to various toxic 
substances. Statis t i c a l analyses of these data have primarily 
involved a description of the distribution of these chemicals 
in the population. Specifically, the proportion of specimens 
for which a particular residue level was quantified and the 
level of the chemical detected have been reported for various 
age, race, sex and geographical strata. 

Approach 

Exploratory data analysis (3) i s performed on the data base 
using multivariate s t a t i s t i c a l techniques. The objectives of 

ρ,ρ1 DDT 
o,pf DDT 
ρ,ρ' DDE 
o,pf DDE 
ρ,ρ1 DDD 
o,pf DDD 
alpha BHC 
beta BHC 
gamma BHC 
delta BHC 

Aldrin 
Dieldrin 
Endrin 
Heptachlor 
Heptachlor Epoxide 
PCB's 
Oxychlordane 
Mirex 
trans-Nonachlor 
Hexachlorobenzene 
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6. ROBINSON ET AL. Human Monitoring Data 85 

this analysis are to assess the applicability of pattern recognition 
techniques in the quality control of human monitoring data and 
to assess i t s a b i l i t y to identify relationships between variables 
contained in the data base. 

Previous analyses were confined to the use of univariate 
techniques applied to the individual chemical residue levels. 
In contrast, this analysis focuses on the evaluation of relationships 
between and among a l l quantitative variables simultaneously. 
To simplify the effort, various subsets of the data base are 
examined. The intent of this action i s to allow for model validation 
or confirmation should relationships of interest be identified. 
The i n i t i a l data set consisted of 3800 records relating to specimens 
collected during the years 1977 to 1981 for those chemical residues 
having a greater than 10% detection rate. Table II l i s t s those 
variables and residues included in the analysis. As the analysis 
progressed changes were made to this data set to either f a c i l i t a t e 
interpretation of the results or to further investigate hypotheses 
generated by the data. 

TABLE II. Variable List of I n i t i a l Data Set 

An examination of summary statis t i c s was conducted to determine 
which variables to include in the i n i t i a l analysis. Measures 
of association between variables, i.e., correlations, were inves­
tigated to ensure that a high degree of multicollinearity did 
not exist between any pair of variables. The need for data 
scaling, transformation, or dimensionality reduction was also 
evaluated. For example, body burden data tend to be lognormally 
distributed. Whether these data need to be transformed prior 
to using techniques such as principal component analysis (PCA) 
is c r i t i c a l to the development of a basic strategy for the analysis 
of this and other data sets containing human monitoring data. 

The i n i t i a l multivariate analysis consisted of a principal 
component analysis on the raw data to determine i f any obvious 
relationships were overlooked by univariate s t a t i s t i c a l analysis. 
The data base was reviewed and records containing missing data 
elements were deleted. The data was run through the Sta t i s t i c a l 
Analysis System (SAS) procedure PRINCOMP and the results were 
evaluated. 

Variable Name Residue 
Date of Collection 
Date of Analysis 
Lab Code 
Geographical Region 
Age 
Sex 
Race 
Length of Storage 
Medical Diagnosis Code 

Hexachlorobenzene 
trans-Nonachlor 
Oxychlordane 
p,p! - DDT 
p,pf - DDE 
alpha Benzene Hexachloride 
beta Benzene Hexachloride 
gamma Benzene Hexachloride 
Heptachlor Epoxide 
Dieldrin 
PCB's 
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Results 

Figure 1 i s a plot of the f i r s t two principal components (PCI 
and PC2) of data from collection year 1981. The symbols on 
the plot (1 to 9) designate the Census Division number in which 
the specimen was collected (1=NE, 2=MA, 3=ENC, 4=WNC, 5=SA, 
6=ESC, 7=WSC, 8=Mo, 9=Pa). A map of the continental United 
States which graphically illustrates the Census Divisions i s 
provided in Figure 2. A striking observation from Figure 1 
is the concentration of 6 fs on the l e f t of the plot. A 6 represents 
the South Central Census Division. Table III l i s t s the loading 
factors associated with the f i r s t and second principal components 
for several chemical residues included in the analysis. The 
negative loadings provided by the chlordane-related compounds, 
Oxychlordane and Heptachlor Epoxide, in the second principal 
component are of specific interest since they are in direct 
contrast to the other loading scores. Subsequent analysis of 
these data found that hig
to one sampling locatio
explanations for this phenomena are (1) the samples were contaminated 
at the collection site or (2) there exists an exposure problem 
to these chemicals in this geographical area. The Census Division 
6 data were produced over an extended period of time and include 
results with non-elevated levels of chlordane-related compounds. 
This suggests that the specimens and not the laboratory are 
the source of the problem. An investigation i s being conducted 
by the EPA to determine the cause of these levels. 

TABLE III. Residue Principal Component Loading Factors 
Data i s from Collection Year 1981 

Variable PrinComp 1 PrinComp 2 
p,pf DDT .414 .075 
p,pf DDE .437 .169 
alpha BHC .009 .033 
beta BHC .395 .006 
gamma BHC .039 .067 
Dieldrin .144 .155 
Oxychlordane .465 -.104 
Heptachlor Epoxide .268 -.335 

Figure 3 i s another plot of output from the PRINCOMP procedure 
on data collected between 1977 and 1979. The symbols on the 
plot represent the year of collection of the specimens ( 7=1977, 
8=1978, 9=1979). A pattern related to the dispersion of the 
7 fs, 8's, and 9*s i s visible but any conclusion at this point 
i s tentative due to the large number of hidden (unplotted) obser­
vations. Examination of the loadings for principal components 
1 and 3 (PCI and PC3) in Table IV note the contribution of the 
residues, p,p! DDE and p,pT DDT, to principal component 3. 
To better assess the effect of these variables on the group 
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* 3 3 
6 4 5 9 3 6 8 

4 5 75 85 5 
5 s 2 3 * 6 32 99 58 

8 1 5 2 5 363 3 3 
1 6 1 5 4 5 4 4 22 59 8 9 74 4 6 9 

Τ 5 83 3 87 3 2 34 372 3 34 3 9 9 4 
β 7 27 7 2 1 5 4 2 8 5 7 7532654 9 9 573788 * 2 

5 β 1 5 1 8 1 2 6 β 5 77 32 35 943 9 2772 3 3 
1 1 53 37 713 17 5 β 5 3 3 9/7334 374 9β47 33 1 9 
53 661 825 7 5 3 33 5 1 **β ί » 2 · 2 

8 41 3 2 2 2 * 3 

Data is from Collection fear 1981 

Figure 1. Plot of PCI vs. PC2. (Symbol i s Number of Census 
Division) 
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Figure 2. U.S. Census Divisions 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



6. ROBINSON ET AL. Human Monitoring Data 89 

ft 
97 » 

7ΐίβο<>««> 9 9 99 
« 7 9 7 » 9 « 9 99· 

' .777777*77 
"77777*7777799' 

-.77777777*7*91 
77*7777777*9' 
47**777777 

* 7779777' 
β 7 7 7 7 7 

97799' 

9 9 < 
1999979 
I99Q99 

Data Is from Collection Vtars 1977-1979 

Figure 3. Plot of PCI vs. PC3 - Uncorrected Data (Symbol i s 
Year of Collection: 7=1977, 8=1978, 9=1979) 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



90 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

of 9 fs outside the central cluster, the scale on the plot was 
changed and the data replotted. Figure 4 i s the revised plot. 

TABLE IV. Residue Principal Component Loading Factors 
Data i s from Collection Years 1977 - 1979 

Variable PrinComp 1 PrinComp 3 
p,pf DDT .358 .452 
ο,ρ' DDT -.012 .064 
p,pf DDE .410 .419 
ο,ρ' DDE .021 -.036 
beta BHC .078 .272 
Dieldrin .124 -.083 
trans-Nonachlor .376 -.240 
Oxychlordane .453 -.282 
Heptachlor Epoxide .157 -.171 
Hexachlorobenzene 
PCB's 

The concentration of 9 Ts in the right side of the plot 
in Figure 4 indicates a potential bias in the 1979 data for 
those variables with the large positive loading scores in principal 
component 3. In an effort to explain these factors, the data 
were sorted by the value of the third principal component and 
a printout of the data was examined. The majority of the high 
scores for PC3 were associated with specimens collected in 1979. 
Further analysis indicated that the ρ,ρ1 DDE residue levels 
are unusually high for a large number of specimens in this year. 
Although, individually, each of the data points passed range 
checks normally used to screen for outliers, the frequency of 
such high levels i s highly unlikely given the wide variety of 
demographic and geographic strata from which these specimens 
were collected. In addition, as these specimens were chemically 
analyzed over the course of a year, the problem could not have 
resulted from the analytical technique used to quantify these 
levels. 

A review of the raw data resulted in the discovery of an 
error in the computer program which created the analysis f i l e . 
A l l residue levels greater than 1.0 were coded in the analysis 
f i l e with an extra 0 between the decimal point and the f i r s t 
unit*s place. For example 2.46 was recorded as 20.46. The 
limited number of such levels did not significantly affect previously 
computed univariate statistics and these a r t i f i c i a l outliers 
remained undetected. Figure 5. presents a plot of the PRINCOMP 
output after the analysis f i l e was corrected. This plot shows 
a more uniform distribution of data points for specimens collected 
in each of the three years. 
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Figure 4. Rescaled Plot of PCI vs. PC3 - Uncorrected Data 
(Symbol i s Year of Collection: 7=1977, 8=1978, 9=1979) 
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Figure 5. Plot of PCI vs. PC3 - Corrected Data (Symbol i s 
Year of Collection: 7=1977, 8=1978, 9=1979) 
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Conclusions 

This preliminary analysis of human monitoring data has identified 
two significant situations that had gone undetected after conven­
tional data checks were made. It should not be concluded, however, 
that other techniques could not provide this identification. 
The relative ease at which non-statisticians can make use of 
a sophisticated technique such as Principal Component Analysis 
speaks to i t s power in the hands of more accomplished practitioners 
or chemometricians. Simple univariate analyses are not sufficient 
to adequately check the large volume of data coming from state-of-
the-art chemical analytical procedures. 

For example, a single estimate for total PCBfs has been 
historically collected in the NHATS program. Current advances 
in chemical analysis protocols now allow for the determination 
of isomer specific resolution of PCBTs. Given the 209 PCB's 
that are now possible to detect, an adequate evaluation of the 
data without the use o
impossible. From a QA/Q
the detection of outliers and aid in the interpretation of human 
chemical residue data. The application of s t a t i s t i c a l analysis 
must keep abreast with these advances made in chemisty. To 
handle the complexity and quantity of such data, the use of 
more sophisticated s t a t i s t i c a l analyses i s needed. 

Work i s continuing on the application of pattern recognition 
to the human monitoring data base to assist in the identification 
and interpretation of potential underlying structures associated 
with this data base. 

Disclaimer 

This document has been reviewed and approved for publication by the 
Office of Toxic Substances, Office of Pesticides & Toxic Substances, 
U.S. Environmental Protection Agency. The use of trade names or 
commercial products does not constitute Agency endorsement or recom­
mendation for use. 
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7 
Description of Air Pollution by Means of Pattern 
Recognition Employing the A R T H U R Program 

F. W. Pijpers 
Department of Analytical Chemistry, University of Nijmegen, The Netherlands 

Pattern recognitio
cription of air pollution in the industrialized region 
at the estuary of the river Rhine near Rotterdam. A 
selection of about eight chemical and physical-meteoro­
logical features offers a possibility for a description 
that accounts for about 70% of the information that is 
comprised in these features with two parameters only. 
Prediction of noxious air situations sometimes succeeds 
for a period of at most four hours in advance. Some­
times, however, no prediction can be made. Investiga­
tions pertaining to the correlation between air compo­
sition and complaints on bad smell by inhabitants of 
the area show that, apart from physical and chemical 
descriptors, other features are also involved that 
depend on human perception and behaviour. 

Description of the Problem 
In our laboratory, pattern recognition has been used in s o l ­

ving a variety of problems. Recently we set for ourselves a goal 
to investigate the probabil ity of describing a i r pollution in high­
ly industrial ized regions in such a way that, by taking appropriate 
measures, complaints from inhabitants of the area would be prevent­
ed. The DCMR* - a governmental organization in The Netherlands -
col lects data on various constituents of polluted a i r at a number 
of locations situated near and in a highly industrial ized area at 
the estuary of the r iver Rhine, near Rotterdam. Occasionally, when 
weather conditions demand i t , warnings for expectations of emergen­
cy a i r pollution situations are dispatched to the industries in the 
area. These dictate a l imitation of the emission of S02, resulting 
from burning of sulfur-containing fue l . In spite of these well o r ­
ganized actions, complaints from inhabitants of the area, who are 
stimulated to communicate their observations by telephone to the 
same office that dispatches the warnings, cannot be precluded. 

* Central Environmental Control Agency, Rijnmond 
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Because of the complex s ituation, which has to be described by a set 
of parameters pertaining to the constitution of the atmosphere at 
various locations and to the weather conditions, the application of 
pattern recognition methods seems obvious. (1-5) 

The aim of this investigation i s twofold: 
- Finding the relevant features that describe emergency situations. 
- Prediction of the evolution of these features in time, in order to 

enable a forecast of potential emergency situations and allow the 
proper measures to be taken in time. Thus, the burden on the inhab­
itants of the area may be al leviated. 

Without going into the details of the numerous techniques 
that are being used in pattern recognition, a general outline of the 
method of problem handling by means of the ARTHUR package may be 
c lear ly i l lus trated from an approach to the a i r pol lution problem. 
(See Table I) 
- For a s tart , the patter

t ion , i . e . , a data vecto
chemical data pertaining to that s i tuat ion, i s positioned in a 
multidimensional feature space that i s spanned by a l l physical 
( i . e . , meteorological) and chemical ( i . e . , compos i t ional) named 
features. 

- When a number of situations, positioned in that feature space, 
group together or cluster, i t i s obvious that their physical and 
chemical behaviour i s s imi lar . This w i l l be perceived by the 
population of the area in the same way. In pattern recognition i t 
i s assumed that such behaviour not only holds for the known phys­
i c a l and chemical data but also reflects s imilar behaviour of 
properties such as fresh a i r or noxious a i r . 

- In this discussion we select a number of consecutive days where a 
period with many complaints i s preceeded and followed by an about 
equal period of "good" days to see whether at least two different 
clusters of patterns in the feature space may be found that corre­
spond with the property polluted a i r versus fresh a i r . 

- In case we succeed in finding these clusters we may proceed by se­
lecting those features that are most relevant for the def init ion 
of the clustering. Here the techniques applied focus on corre la­
t ion among the features themselves and a correlation between the 
features and the dig i t ized property. (C0RREL and WEIGHT are the 
appropriate sub-routines in the ARTHUR package). (6) 

- F ina l ly the relevant feature combination for the description of the 
situations where complaints may occur can be used to predict the 
possible occurrence of bad situations in the (near) future. 

Discussion of the results 

In Figure 1, a map is presented of the estuary of the r iver 
Rhine near (west of) Rotterdam. The industrial ized region is situated 
around the harbors located south of the r iver near Hoogvliet. Refin­
eries and f e r t i l i z e r plants are found there. In Table 1, various 
stages in pattern recognition are l i s t ed . The subroutine CHANGE, i n 
combination with the INPUT-format is used in stages one and two. 
HIER, TREE and PLANE are useful in stage three, whereas C0RREL and 
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96 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

WEIGHT are employed in stage four. Addition of an extra number of 
patterns in a TEST-set allows validation of the learning machine 
developed in the previous stages. 

Table II l i s t s the chemical and physical measurements that 
produce the feature space. A l i s t of complaints as coded from the 
communications from the population is also given. Application of the 
inter-feature correlation calculat ion, CORREL, on the chemical and 
physical features l i s t ed here, results in a l imitat ion of the number 
of features without sacr i f ic ing too much information. Apart from the 
s tab i l i t y parameter, representing the meteorological conditions, 
some chemical constituents of polluted a i r are found to be of impor­
tance in describing the situation (see Table III) . 

Construction of the interfeature variance-covariance matrix, 
followed by an eigenvector-eigenvalue calculation according to the 
Karhunen - Loéve procedure (KARLOV), produces a number of eigenvec­
tors equal to the number of features. It i s found that the two 
highest eigenvalues comprise 78% of the tota l information, and thus, 
should provide a reasonabl
ters representing "bad"
projection on the plane defined by the f i r s t two eigenvectors is 
given in Figure 2. 

Table I . Various Stages in Pattern Recognition 

1. Definition of problem space and data vectors 

2. Selection of patterns for a training set 

3. Search for clusters by various techniques 

4. Selection, ordering and weighting of relevant features 
( iteration between step 3 and 4) 

5. Predictions for a test set 

From this figure one could get the false impression that the problem 
has been solved. This i s not true because this result could only be 
obtained with a carefully selected data set measured early in May, 
1979. The weather was stable during the entire observation period, 
comprising two weeks with many complaints, followed and preceeded by 
two weeks of pract ica l ly no complaints. The other months of that 
year showed a much less predictable s i tuat ion. 

In order to see whether the development in time of a given 
situation could be followed, autocorrelation functions of a l l relevant 
features were constructed. From these functions i t was observed that, 
provided the weather was not too unstable, an autocorrelation time of 
about four hours was encountered. This autocorrelation was best de­
fined for S02 concentrations that are measured hourly at various 
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Table II . L i s t of Observed Features 

97 

Chemical Compounds 

Nitrous oxide 
N i t r i c oxide 
Sulfur dioxide 
Standardized smoke 
Saturated and 
Olef inic Hydrocarbons 

Ozone 

Meteorological Conditions 

Direction of the wind 
Speed of the wind 
Relative humidity 
Temperature 
Sunlight radiation 
Amount of precipitation 
A i r pressure 
Cloudiness 
Stabi l i ty 

Types of Complaint 

Soot, dust 
Noxious smell 
Ac id , chemical smell 
Oi ly smell 
Smog 
Others 

Table III . L i s t of Relevant Features 

Stabi l i ty (Meteorological conditions) 
Ozone 
Saturated hydrocarbons 
Olef inic hydrocarbons 
Sulfur dioxide at three different locations 

locations in contrast to other a i r constituents that are measured 
less frequently. This time dependency has been translated into 
features that could be employed in the pattern recognition process 
by introducing not only the actual concentration of S02 but also i t s 
time dependence as concluded from observations up to four hours in 
the past. 
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Based upon these features another learning machine was con­
structed for the year 1982, describing the s ituation with exclusion 
of the months September t i l l December when the weather was in general 
too unstable. From that period 36 situations have been selected where 
complaints were registered for at least two consecutive hours. These 
data were completed by another 36 situations without complaints, se­
lected exactly 24 hours before or after a period with complaints. 

The time dependence of the direction of the wind was taken i n ­
to account by integration over a period of four hours in the past. 
These features were autoscaled, weighted and combined l inearly 
according to the Karhuhnen-Loeve transformation. (See Table IV). 
This table refers to the situation in the c i ty of Schiedam. The 
eigenvectors l i s t ed here are represented by the squares of the 
coefficients; the two most important ones account for 68% of the 
variance of the entire set of features. It i s seen i n Figure 3 that 
the projection of the patterns on the plane spanned by these two 
eigenvectors is dominate
feature values. One ma
with complaints and that without complaints. 

In search for a better description, and taking into account 
that the impressions registered by the human nervous system should 
be rated on a logirithmic scale; a new transformation was t r i e d , 
this time based upon logarithmized features. This resulted in Table 
V, where i t i s seen that a somewhat enhanced information from the 
f i r s t two eigenvectors was obtained, in comparison with that of 
Table IV (68% and 71% respectively). The merits of this learning 
machine are visualized in Figure 4, where apart from the training 
set patterns an extra set of 13 patterns with complaints and 13 
patterns without complaints i s added and projected as a test set. 
According to the nearest neighbour voting system, eight out of 
thirteen non-complaint situations and nine out of thirteen complaint 
situations are positioned correct ly . This i s not an impressive 
resul t . Apparently the "reason" for complaints i s not exclusively 
described by physical or chemical parameters. 

This observation i s also i l lus trated by another calculation. 
In Figure 5, the hourly patterns of one day (24 hours) were projec­
ted on the training set. This day, May 17th, 1982, at Schiedam com­
prises two hours with complaints, v i z . , 13 and 14 hour. It i s seen 
that the situation evolves from the area where no complaints are 
predicted towards the complaint area. About 8.00 hour the borderline 
i s crossed and indeed at 13.00 and 14.00 hour complaints are recorded. 
The 15th and 16th hour, that are c learly in the complaint area, are 
not s ignalled, and the trace ends at 23 hours without complaints in 
the non-complaint area as was expected. 

However, this procedure fa i led completely with the hourly 
data set collected on July 7th and 8th in the same location (See 
Figure 6). Here the evolution in time of the a i r composition pattern 
vector c irc les around in the boundary area between complaint and 
non-complaint situations. There are complaints registered at 12 and 
13 hours, however, why is not clear from the picture. This i s another 
i l lu s t ra t ion of the observation that features other than physical or 
chemical ones may be involved in triggering complaints by the 
population. 
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Table TV. Karhuhnen-Loeve Transformation of "Schiedam" Data 
(Autoscaled and Weighted) 

Eigenvector 
Feature F i r s t Second 

Sulfur dioxide (loc.10) 0.30 0.00 
Sulfur dioxide ( l o c . l l ) 0.15 0.23 
Direction of wind * 0.01 0.49 
Variation in sulfur dioxid
Sulfur dioxide (loc.12
Sulfur dioxide (loc.13) 0.12 0.!1 
Variation in sulfur dioxide (loc.10) 0.12 0.04 
Saturated hydrocarbons 0.02 0.00 

1.00 1.00 

Eigenvalue ( i . e . , information) 54% + 14% = 68% 

Table V. Karhunen-Loève Transformation of "Schiedam" Data 
(Ilogarithmized, Weighted and Autoscaled) 

Eigenvector 
Feature F i r s t Second 

Log Sulfur dioxide (loc.10) 0.36 0.00 
Log Sulfur dioxide ( l o c . l l ) 0.28 0.32 
Log Sulfur dioxide (loc.12) 0.12 0.21 
Log Sulfur dioxide (loc.13) 0.10 0.36 
Log Variation S02 (loc.10) 0.06 0.04 
Log Variation S02 ( l o c . l l ) 0.06 0.03 
Direction of wind* 0.02 0.04 

1.00 1.00 

Eigenvalue ( i . e . information) 58% + 13% = 71% 

* Integrated backwards in time for 4 hours. 
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Figure 2. P r o j e c t i o n o
complaints, of a i r p o l l u t i o n on the two most s i g n i f i c a n t eigen­
vectors of the Karhunen-Loeve transformed, seven-dimensional feature 
space. Reproduced with permission from Ref. 7. Copyright 1984, 
The Royal Society of Chemistry. 
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Figure 3. P r o j e c t i o n of hours# , with complaints, andO, without 
complaints, of a i r p o l l u t i o n on the two most s i g n i f i c a n t eigenvectors. 
See Table IV. 
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Figure 4. P r o j e c t i o n of hours · , wi t h complaints, and O, without 
complaints, i n c l u d i n g t e s t set patterns • , with complaints, and 
• , without complaints. See Table V. 

Figure 5. P r o j e c t i o n of hours # , wi t h complaints, and Ο» 
without complaints, i n c l u d i n g a t e s t set of 24 hourly measurements 
on May 17, 1982,· , with complaints, and • , without complaints, 
s t a r t i n g at 0.00 h. 
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Figure 6. Projection of hours ·, with complaints, and °, without 
complaints, including a test set of hourly measurements on July 
7 and 8 •, with complaints, and D without complaints· 
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S t a t i s t i c a l and mathematical procedures 

103 

In order to treat a l l features without preference, they are 
scaled such that a l l feature-axes in the multi-dimensional feature 
space get an equal length according to 

X ' i , k - ( x i , k - x i ) / t ( Ν - 1 ) ̂  α ( x. ) } 

which i s named autoscaling. Here χ 1. , represents the autoscaled 
Ν 1 , k 

feature i for pattern k; χ. = Σ χ. ,/N; Ν the number of patterns 
ι k 1 , k 

and σ ( ) the standard deviation of feature i , according to 

α ( χ. ) = { I * , ( x i > k - \ ) /(N-.) }* 

Thus the center of each axis equals zero and the distribution around 

the center becomes symmetrical for Gaussian distributed feature 

values; σ (x^) represents the unit length along the axes. 

The distance d. . between two patterns i and j in the multi-

dimensional feature space is calculated according to the Euclidean 

distance definition: 

d i , j = 4 i { ( x ,
k , i >2 - ( x ' k , j ) 2 } i 

where M represents the number of features and thus the dimensiona­

l i t y of the feature space. x f . represents the autoscaled value for 
k,i 

feature k with pattern i . The distances are collected in the dis­

tance matrix with the dimension Ν * Ν. This matrix is symmetrical 

around the diagonal; a l l diagonal elements are zero. 

The hierarchical clustering procedure operates on the dis­

tance matrix. Clustering of patterns is searched for by combining 

patterns with high similarity into gravity centres, in between the 

similar patterns. Here, a similarity scale runs from 1 to 0 according 
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to 

S. . = 1 - d. . / D i, J i , j max 

where D represents the highest numerical value encountered in the 
distance matrix. After each combination of two patterns or of a pat­
tern and a gravity center, the distance matrix is recalculated. The 
procedure is followed graphically and ended when a preset number of 
clusters is found or when the gravity centers of the clusters upon 
combination have to travel beyond a preset distance. The graphical 
representation of the clustering retains distances or similarities 
but omits the mutual orientation of various patterns. 

The minimal spanning tree also operates on the distance ma­
tr i x . Here, near by patterns are connected with lines i n such a way 
that the sum of the connecting lines is minimal and no closed loops 
are constructed. Here to  th  informatio  distance  i  retained
but the mutual orientatio
hierarchical clusterin
clusters in the multi-dimensional space visible on a plane. 

The correlation between two features ρ and g reads 

C = 1 i f , ( χ , - χ ) (χ . - Χ ) 
P ' g (Ν=Τ).σ .σ k = 1 p ' k P g ' k g 

Ρ g 

where a l l symbols have the meanings as defined above. 
The weight of a feature depends on i t s a b i l i t y to separate 

two categories or clusters j and k from each other. The equation for 
the variance weight W. . for feature i reads. 

2 2 
W. . . = (x' ) · · + (Χ' ), . - 2 χ'. . χ. . 

( M 2 ) i , j + ( M 2 ) i , k 

Here χ'. . represents the autoscaled value for feature i for a 
pattern*'situated i n cluster j and (M2) the second moment for a l l 
feature values i of the N. patterns in cluster j according to 

N i - 2 

(M2). . = Σ (x\ , - x\ . ), M k=l i,k i,k'/ 

The Karhuhnen-Loève transformation represents an eigenvalue-
eigenvector calculation based upon the variance- cοvariance matrix 
of the features. It aims for a linear combination of features such 
that there are as much linear combinations as features. The linear 
combinations are mutually orthogonal and have a norm equal to one. 
Each linear combination (eigenvector) accounts for a part of the 
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tota l variance encompassed by the features. The vectors are ranked 
according to this variance - the eigenvalue. 

Conclusions 

Pattern recognition offers a useful tool for the description 
of a i r pol lut ion in industrial ized areas. Depending on the weather 
conditions, sometimes even a prediction of situations with bad-smel­
l ing a i r may be obtained. However, when the weather conditions are 
unstable, no va l id prediction i s possible. Apart from physical , 
meteorological and chemical features, other factors must be accounted 
for to predict the burden fe l t by people l i v ing in the area. 
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8 
Application of Soft Independent Modeling of Class 
Analogy Pattern Recognition to Air Pollutant Analytical 
Data 

Donald R. Scott 
Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, 
Research Triangle Park, NC 27711 

The SIMCA 3B computer program is a modular, graphics 
oriented pattern recognition package which can be run 
on a microcomputer with limited memory, e.g., an 
Osborne 1 with 64K memory. The SIMCA program was used 
to display small (four to eight objects) analytical 
data sets for exploratory data analysis after princi­
pal component fitting. K-Nearest Neighbor distances 
were also computed. The data sets included an inter­
laboratory comparison of trace element analyses of 
simulated particulates by X-ray emission; a compari­
son of flame and Zeeman atomic absorption methods for 
analyzing lead in gasoline; and GC/MS analysis of 
volatile organic compounds in ambient air. The combi­
nation of principal component and K-Nearest Neighbor 
analysis was found to provide a convenient and quick 
method for determining trends and detecting outliers 
in the data sets. 

Pattern recognition has been applied i n many forms to various types 
of chemical data (1,2). In this paper the use of SIMCA pattern rec­
ognition to display data and detect outliers in different types of 
air pollutant analytical data is illustrated. Pattern recognition i s 
used in the sense of classification of objects into sets with emphasis 
on graphical representations of data. Basic assumptions which are 
implied i n the use of this method are that objects in a class are simi­
lar and that the data examined are somehow related to this similarity. 

Before analysis, i t i s necessary to arrange the relevant data in 
a data matrix which consists of η objects (laboratories, samples, 
methods, etc.) arranged in rows with ρ columns of variables (concen­
trations, peak heights, etc.). The objects are designated with a 
subscript i , and the variables are designated with a k. An element 
in the matrix, X^o represents the value of variable k for object i . 
Columns show the values of the particular variable k over a l l η 
objects, and,rows show the values of a l l ρ variables for a particular 
object i . 

This chapter not subject to U.S. copyright. 
Published 1985, American Chemical Society 
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Slmca Pattern Recognition 

The SIMCA pattern recognition techniques were developed by S. Wold 
and co-workers at the University of Umea, Sweden (3,4). SIMCA is an 
acronym for Soft Independent Modeling of Class Analogy. A version 
of these procedures, SIMCA 3B, is now available which w i l l run on 
a microcomputer. The computer programs are user interactive and 
graphically oriented. In this study an Osborne 1 microcomputer with 
a CP/M operating system and 64K memory was used. This amount of 
memory is sufficient to handle a data matrix of size 50 objects by 
50 variables. The compiled program occupied 220K space on a double 
density floppy disk. 

The SIMCA 3B package includes modules to define a data f i l e ; to 
scale, weight, and transform data; to edit, merge, or s p l i t the 
data f i l e ; to l i s t the f i l e ; to input the data, define classes, and 
perform K-Nearest Neighbor analysis; to plot the data; to perform 
principal component analysis for classes; to test the f i t of data to 
defined classes; and t
relationships with independen
various modules in SIMCA 3B and their relationships is shown in 
Figure 1. The SIMCA pattern recognition programs are based on 
deriving disjoint principal component models for classification of 
objects and canonical partial least squares procedures for estab­
lishing quantitative relationships among variables. The object of 
the analysis may be to obtain an overview of the data set, to reduce 
the number of variables to the most important ones, to determine 
correlations between variables, to classify objects, or to determine 
outliers in the data set. The objects in the data matrix may be 
laboratories, methods, samples analyzed, chemical elements, or com­
pounds depending upon the problem. The variables may be peak 
intensities, concentrations, etc., but they must be relevant to the 
problem. Each row of variables in the data matrix must pertain to 
the same property for a l l objects. Two assumptions are important 
when using these procedures. The user must know the type of informa­
tion desired from the data, and the data must have been derived from 
relevant, well performed experiments. 

Each object in the data table can be considered to represent a 
single point i n a k-fold space (called measurement space) defined by 
the row vector of k variables listed in the data table. Each of the 
k variables in the row vector represents the value of the coordinate 
of the object point along the kth axis in this measurement space. 
Since the number of variables for a given data set can be very large, 
the resulting measurement space can have a correspondingly large 
number of dimensions. This large dimensionality of the data makes i t 
very d i f f i c u l t to obtain an overview of the data set. If the objects 
are similar with regard to the variables used, then the points in 
measurement space should form a cluster or class. On the other hand 
outliers in the data set should be noticeable by their distance from 
this cluster or class. The definition of the class or classes of 
objects w i l l depend upon the number of objects i n the class and the 
relevance of the variables used for the objects. 
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Since similar objects should be relatively close to each other 
in measurement space, one method of classifying objects i s by their 
distances from each other i n this space. These distances are calcu­
lated in the K-Nearest Neighbor Module, included in the SIMCA package. 
The distance, d, between objects j and 1 is determined from the 
Euclidean distance: 

d 2 = Σ (χ - χ )2 
j l k jk lk 

An object can be classified by the distances to i t s nearest neigh­
bors, e.g., the nearest three. 

One of the important functions of principal component analysis is 
the reduction of dimensionality so that an overview or graphical 
representation of the data set may be given in two dimensional plots. 
This allows the user to "see" the relationships between the objects 
in the data set. This process is accomplished by f i t t i n g two or more 
principal components to
along the axis of greates
matrix about their means. The second principal component is indepen­
dent of (orthogonal to) the f i r s t and i s the vector along the axis of 
next greatest variance i n the data. Succeeding principal components 
can be calculated which w i l l be orthogonal to the preceding ones and 
which may explain some of the remaining variance. The principal 
components are linear combinations of the original variables which are 
fi t t e d i n the least squares sense through the points in measurement 
space. These new variables usually result in a reduction of v a r i ­
ables from the original set and often can be correlated with physical 
or chemical factors. The coefficients of the original variables in 
the principal components, the loadings, provide information regarding 
important and redundant variables for the analyzed data. SIMCA uses 
a bilinear projection model to decompose the data matrix into a score 
matrix, a loading matrix, and a residual matrix. The residual matrix 
contains that part of the data matrix which does not f i t the model. 
If the residuals are small compared with the variation i n the data 
matrix, then the model is a good representation of the data matrix. 

In the following discussion, three types of air pollutant ana­
l y t i c a l data w i l l be examined using principal component analysis 
and the K-Nearest Neighbor (KNN) procedure. A set of interlaboratory 
comparison data from X-ray emission trace element analysis, data from 
a comparison of two methods for determining lead in gasoline, and 
results from gas chromatography/mass spectrometry analysis for vol­
a t i l e organic compounds in ambient air w i l l be used as ill u s t r a t i o n s . 

X-ray Emission Methods for Trace Element Analyses 

An intercomparison study of trace element determinations in simu­
lated and real air particulate samples has been published by Camp, 
Van Lehn, Rhodes, and Pradzynski (5). This involved twenty-two 
different laboratories reporting up to thirteen elements per sample. 
The simulated samples consisted of dried solution deposits of ten 
elements on Millipore cellulose membrane f i l t e r s . In our data analy­
sis a set of energy dispersive X-ray emission results restricted to 
eight laboratories reporting six elements (V, Cr, Mn, Fe, Zn, Cd) was 
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used for the simulated samples. The data table for the simulated 
samples i s shown in Table I, which i s an eight laboratory (objects) 
by six element (variables) matrix. The cadmium data for laboratories 
2 and 7 were not reported but were estimated to be the median of the 
remaining elements for each laboratory. A l l of these data have been 
scaled by dividing the reported values by the known ones. There­
fore, a value of 1.00 represents a perfect analysis result. The 
median over a l l elements for each laboratory i s also given in the 
Table. These range from a low of 0.76 for Laboratory 8 to a high of 
1.02 for Laboratory 4. Laboratories 4 and 8 are suspected outliers 
in this set of data. 

Table I. Interlaboratory Comparison of X-ray Emission 
Analyses, Simulated Samplesa 

Lab V Cr Mn F e Z n C d Median1 

1 0.73 0.84 0.8
2 0.87 0.90 0.8
3 1.01 0.87 0.92 1.00 0.94 1.09 0.97 
4C 1.03 1.01 1.00 1.11 1.44 0.85 1.02 
5 0.97 0.95 0.96 0.95 0.95 0.94 0.95 
6 0.94 0.95 0.94 0.94 1.03 0.97 0.95 
7 0.99 0.98 0.96 0.92 0.91 (0.95)<* 0.96 
8c 0.71 0.77 0.75 0.69 0.82 0.89 0.76 
aReference 5. A l l data have been scaled by dividing the reported 
values by the known ones. 

^Median of each laboratory results, omitting estimated data. 
cSuspected outliers. 
^Data not reported. Estimated as laboratory median for a l l ele­
ments. 

A principal component analysis was performed on a l l the data in 
Table I after autoscaling the data. The results of the analysis are 
given i n Table II. The scaled averages and the weights for each 
variable are l i s t e d . The loadings and modeling power for each v a r i ­
able also are listed with the remaining unexplained variance in the 
data table and the residual standard deviation for each principal 
component. The modeling power is the percentage of the standard 
deviation for the variable which is explained by the principal com­
ponent. The residual standard deviation is the standard deviation of 
the data matrix which i s not explained by the model. From the load­
ings in Table II i t can be seen that the f i r s t principal component is 
composed of approximately equal weights of a l l elements except cadmium 
which has a zero modeling power and a low negative loading. The 
f i r s t and second principal components together account for 89% of the 
original variance with a residual standard deviation of 0.40. The 
loadings of the second principal component show a very strong contri­
bution from cadmium with smaller ones from zinc, vanadium, and iron. 
The iron and vanadium loadings are essentially equal in both principal 
components. A l l of the variables, except cadmium, are modeled well 
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by both principal components. A plot of the locations of the eight 
laboratories on the two principal components i s shown in Figure 2. 
This is a projection of the objects from six variable space onto the 
plane defined by the two principal components. The laboratories are 
scattered with 4, 8, and 3 apparently on the fringes of the data 
set. Examination of the loadings of the variables for the two prin­
cipal components shows that cadmium is widely separated from the 
other clustered elements, indicating that i t i s anomalous. Therefore, 
the cadmium data were omitted from the data matrix, and the principal 
component analysis was performed again. The results show that Lab­
oratories 4 and 8 are Indeed outliers with the other laboratories 
clustered together. 

Table II. PC Analysis of X-ray Data, Simulated Samples 

Elements V Cr Mn Fe Zn Cd 

Average 3 7.256 
Weights b 8.007 

11.42
12.57

PCI 

Loading 0.452 0.451 
Model Powerc 0.63 0.62 
Remaining Variance^: 
Residual Std. Deviation e: 

0.471 
0.78 

32.8% 
0.627 

0.445 
0.59 

0.408 
0.43 

-0.072 
0 

PC 2 

Loading -0.216 0.070 
Model Power 0.71 0.60 
Remaining Variance: 
Residual Std. Deviation: 

-0.097 
0.79 
10.8% 
0.402 

-0.200 
0.63 

0.337 
0.56 

-0.886 
0.86 

aScaled averages obtained by multiplying original averages by weight. 
^Weights are the reciprocal of the standard deviation for each 
variable· 

Percentage of explained standard deviation for this variable after 
the respective PC f i t . 

^Variance remaining after principal component f i t . 
eStandard deviation of data matrix unexplained by PC model. 

In order to check the results of the analysis, K-Nearest Neighbor 
distances were computed for the scaled data set including the cadmium 
results. The median of the distances from a given laboratory to the 
three nearest neighbors ranged from 0.26 to 1.24 with the median dis ­
tance between members of the cluster (1,2,3,5,6,7) equal to 0.79. 
The median distances of Laboratories 4 and 8 from members of this 
cluster were 1.24 and 1.22, respectively, supporting the view that 
these laboratories are outliers. 
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Figure 2. Principal component plot of x-ray data by laboratory. 
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Methods of Determining Lead In Gasoline 

The ASTM-EPA standard method of analyzing lead i n gasoline requires 
extraction of alkyl lead iodide complexes into methylisobutylketone 
and a subsequent flame atomic absorption analysis of the extract. A 
more direct method has been proposed (6) which uses Zeeman atomic 
absorption analysis after sample dilution. Both methods were used to 
analyze a set of five f i e l d collected samples. The results showed a 
bias (average difference between method results) of 0.0012 g/gal with 
the standard flame results higher. The correlation coefficient 
between the results was 0.9998 ± 0.0009, and a pairwise t-test showed 
no difference between the methods (6). 

This very small set of results was subjected to principal com­
ponent and K-Nearest Neighbor analysis, after autoscaling, to deter­
mine the effectiveness of the SIMCA procedures in displaying small 
data sets. The data table (four methods by five samples) i s shown 
in Table III. The methods to be compared are two of the objects, 
and two other objects wer
subtracting 0.01 g/gal
results. The ± 0.01 g/gal range is an Environmental Protection 
Agency guideline for replicate analysis results within one laboratory. 
This range can be used to gauge the spread of the objects in the 
principal component plot. 

Table III. Comparison of Lead i n Gasoline Methods 

Sample 1 2 3 4 5 
Method (s/gal) 

Flame AAS a 0.0015 0.0040 0.0040 0.0105 0.082 
Zeeman AAS 0.0015 0.0046 0.0039 0.0110 0.075 
Flame +.01° 0.0115 0.0140 0.0140 0.0205 0.092 
Flame -.01b -0.0085 -0.0060 -0.0060 0.0005 0.072 

Source: Adapted from Reference 6 . 
aThe ASTM-EPA standard method. 
bData constructed by adding or subtracting 0.01 g/gal from the 
standard method result. 

The results of the principal component analysis are given in Table 
IV and Figure 3. The f i r s t principal component Is composed of essen­
t i a l l y equal contributions from a l l samples with very good modeling 
for a l l samples. After the f i t of the second principal component, 
there was no remaining variance and no residual standard deviation. 
The loadings for the second principal component showed a high con­
tribution from the highest concentration sample with approximately 
equal but lower negative contributions from the rest. The modeling 
power for a l l variables was excellent. 
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Table IV. PC Analysis of Lead i n Gasoline Data 

Samples 1 2 3 4 5 

Average 
Weights 

0.1837 
122.5 

0.5079 
122.4 

0.4868 
122.5 

1.301 
122.4 

9.034 
112.6 

PCI 

Loading -0.453 
Model Power 0.92 
Remaining Variance: 4. 
Residual Std. Dev.: 0. 

-0.451 
0.88 

1% 
228 

-0.453 
0.93 

-0.452 
0.88 

-0.427 
0.59 

PC 2 

Loading 
Model Power 

-0.172 
1.00 

-0.270 -0.155 -0.254 0.900 

Remaining Variance: 0
Residual Std. Dev.: 0.000 

Examination of the projection plot i n Figure 3 gives the impres­
sion that the new Zeeman method (ZAAS) is farther from the standard 
flame method (FAAS) than are the guideline limits of ± 0.01 g/gal. To 
verify this impression, a K-Nearest Neighbor distance analysis of the 
scaled data was conducted. The resulting distances are shown on the 
vectors in Figure 3. The distance between the standard method and the 
Zeeman method i s 0.355 compared to a distance of 1.21 from the standard 
method to either guideline li m i t . These results confirm the equiva­
lence of the results from the two methods as already noted using 
parametric s t a t i s t i c a l methods (6). They also indicate a problem with 
visual examination of principal component plots of data sets as small 
as the present one. The use of the K-Nearest Neighbor distances 
provides a convenient check on the principal component plots i n this 
case. 

Gas Chromatography-Mass Spectrometrlc Analysis of Organic Compounds 

A commonly used method of sampling and analysis for volatile organic 
compounds in ambient air i s by concentration of the compounds on a 
solid sorbent such as Tenax and subsequent thermal desorption and 
GC/MS analysis of the collected compounds. The analysis phase, 
although not t r i v i a l , can be done well i f proper care is taken. 
However, the sampling phase of this process apparently introduces 
artifacts and unusual results due to, as yet, unknown factors. A 
method to detect some sampling problems has been proposed and tested 
(7). This distributed air volume method requires a set of samples 
of different air volumes to be collected at different flow rates 
over the same time period at the sampling location. Each pollutant 
concentration for the samples should be equal within experimental 
error since the same parcel of air is sampled in each case. Dif­
ferences in results for the same pollutant in the various samples 
indicates sampling problems. 
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A set of results from the distributed a i r volume method obtained 
in Elizabeth, New Jersey, in October, 1981, (7) is given in Table V. 
There are four objects (samples with 10, 15, 21, and 26 L total a i r 
volume) with eight organic compounds as variables. A cursory exami­
nation of the data table shows that the results from the 10 L sample 
are higher than those for the other samples for a l l pollutants. Thus 
this sample is a suspected outlier. 

Table V. GC/MS Data for Organic Compounds Collected on Tenax 

Compound 1 2 3 4 5 6 7 8 
Sample (yg/m3) 

10 L a 8.64 18.63 3.74 5.10 1.86 1.48 4.69 11.92 
15 L 7.12 15.04 
21 L 6.17 14.89 
26 L 6.76 15.05 2.96 2.68 0.73 1.69 2.59 5.04 
Source: Adapted from Ref. 7. 

Compounds : 1(benzene), 2(toluene), 3(1,2-dimethylben-
zene), 4(ethylbenzene), 5(styrene), 6(trichloroethylene), 7(1,1,1-
trichloroethane), 8(benzaldehyde)· 

aSuspected outlier. 

The autoscaled data were subjected to a principal component 
analysis with the results given in Table VI. The f i r s t principal 
component was composed of approximately equal contributions from a l l 
compounds except for trichloroethylene, which had a low contribution. 
The results for modeling power for the f i r s t principal component 
showed a good f i t for benzene and a very good f i t for a l l the other 
compounds except trichloroethylene, which had zero modeling power. 
The f i t of the f i r s t and second principal components gave a remaining 
variance of 11% with a residual standard deviation of 0.38. The second 
principal component was composed of trichloroethylene with very small 
contributions from the other compounds. Benzene had a negative and 
low contribution to this principal component. The modeling power 
was very good for a l l compounds except benzene. The projection of 
the samples on the plane of the two principal components is shown in 
Figure 4 where i t appears that the 10 and 15 L samples are not close 
to the 21 and 26 L samples. The loadings of the two principal com­
ponents show that six of the compounds clustered, with benzene and 
trichloroethylene outside the cluster. To confirm the results of the 
principal component projections, a K-Nearest Neighbor analysis of the 
scaled data was performed. The 10 L sample had a median distance 
from the other samples of 1.84. The median distance between the 
members of the (15, 21, 26 L) cluster is 0.71. This supports the 
identification of the 10 L sample as an outlier. However, the 15 L 
sample does not appear to be an outlier. 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



SCOTT Air Pollutant Analytical Data 1 

ο 
α. 
Έ 
Ο υ 
_ι 
< 
ο. 

ce 
(L 

PRINCIPAL COMPONENT 1 

Figure 3. Principal component plot of lead methods and KNN 
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Figure 4. Principal component plot of GC/MS data by sample. 
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Table VI. PC Analysis of GC/MS Data 

Compound 1 2 3 4 5 6 7 8 

Average 6.81 
Weights 0.95 

8.74 
0.55 

8.85 
2.76 

3.15 
0.90 

2.19 
1.94 

11.2 
7.3 

3.30 
1.01 

2.00 
0.29 

PCI 

Loading 0.35 
Model Power 0.49 
Remaining Variance: 
Residual Std. Dev.: 

0.38 
0.82 

23% 
0.52 

0.38 
0.88 

0.37 
0.72 

0.37 
0.70 

-0.12 
0 

0.38 
0.86 

0.38 
0.86 

PC 2 

Loading -0.18 
Model Power 0.36 
Remaining Variance: 
Residual Std. Dev.: 

0.0
0.7

11% 
0.38 

Compounds: 1(benzene), 2(toluene), 3(1,2-dimethylbenzene), 4(ethyl-
benzene), 5(styrene), 6(trichloroethylene), 7(1,1,1-trichloroethane), 
8(benzaldehyde). 

After omitting the 10 L data, the data were resubjected to a 
principal component analysis. The loadings of the two new principal 
components were compared with those from the previous analysis. The 
omission of the 10 L data caused a separation of benzaldehyde and 
toluene from the previously clustered compounds as well as retaining 
the separation of benzene and trichloroethylene as found previously. 

Conclusions 

The use of the SIMCA principal component analysis and graphing pro­
grams to obtain a "window" into the multi-dimensional measurement 
space of a data set is a quick and effective way to obtain an over­
view of a data set and to detect outliers. For very small numbers of 
objects, e.g., the four in the data from the lead in gasoline methods 
comparison or the Tenax GC/MS data, i t i s necessary to confirm the 
graphical results by performing K-Nearest Neighbor analysis of the 
data. The analysis of the data from the lead in gasoline methods 
comparison also showed that useful results can be obtained even with 
only two real objects (the two methods) with five variables (samples). 
Finally, i t is best to remember what S. Wold has said about s t a t i s ­
t i c a l methods of data analysis (3), "In a data set there is often no 
information whatsoever about the given problem." Therefore, par­
ticular care should be taken to design experiments to answer the 
desired questions and to guard against over-analysis of irrelevant or 
noisy data. 
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Disclaimer 

This paper has been reviewed in accordance with the U. S. Environ­
mental Protection Agency's peer and administrative review policies 
and approved for presentation and publication. Mention of trade 
names or commercial products does not constitute endorsement or 
recommendation for use. 
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Atmospheric particle types are identified using k-means 
cluster analysis. Nearest neighbor classification is 
used to produce particle number versus type histograms 
that allow identification of spatial and temporal 
emission patterns. Factor analysis is carried out on the 
particle-type results from several sampling periods or 
sites to identify relationships between particle types 
and for source identification. The methods are applied to 
the elemental composition of particles from the Phoenix 
aerosol which are obtained using an automated analytical 
scanning electron microscope. Seven methods are 
considered for choosing cluster seedpoints. Cluster 
significance is judged using the ratio of the sum of 
squared distances between clusters to the sum of squared 
distances within clusters. In order to account for the 
full variability in the data set, more clusters are 
necessary than may be statistically significant. 

Data obtained from the analysis of individual atmospheric particles 
i s ideal for the id e n t i f i c a t i o n of par t i c l e sources and for the 
study of particle dynamics and emission patterns (1). Using an 
analytical scanning electron microscope (ASEM) equipped for energy-
dispersive X-ray spectrometry (EDS), the elemental composition, 
size, shape and morphology of particles can be determined. This 
information i s necessary for determining the effects of particles on 
such important areas as health, climate and v i s i b i l i t y . 
Individual p a r t i c l e analysis i s particularly useful for studying 
elemental speciation and association, p a r t i c l e agglomeration, 
surface coatings and the distribution of elements as a function of 
part i c l e size (2=6). The ASEM i n our laboratory i s automated so 
that analyses of about 1000 particles are commonly used to 
characterize each sample. The a b i l i t y to rapidly analyze large 
numbers of particles necessitates the development of s t a t i s t i c a l 
methods for data reduction and analysis of these large data sets. 
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Cluster analysis i s used to determine the particle types that 
occur in an aerosol. These types are used to c l a s s i f y the particles 
i n samples collected from various locations and sampling periods. 
The results of the sample c l a s s i f i c a t i o n s , together with 
meteorological data and bulk analytical data from methods such as 
instrumental neutron activation analysis (INAA), are used to study 
emission patterns and to screen samples for further study. The 
cl a s s i f i c a t i o n results are used i n factor analysis to characterize 
spatial and temporal structure and to aid in source attribution. 
The c l a s s i f i c a t i o n results are also used i n mass balance comparisons 
between ASEM and bulk chemical analyses. Such comparisons allow the 
combined use of the detailed characterizations of the individual-
p a r t i c l e analyses and the trace-element capability of bulk 
analytical methods. 

These methods, while being developed for the study of the 
Phoenix aerosol, are also applicable to a wide range of studies
The vast majority of particle
aerosol are crustal i
mineral particles. They thus provide a stringent test case for the 
methods, since these particles produce many large, closely spaced 
clusters, and these tend to obscure smaller, atypical clusters that 
are of anthropogenic orig i n . 

Cluster Analysis 

There are three goals for cluster analysis. 1) The most immediate 
i s the qualitative i d e n t i f i c a t i o n of the types of particles that 
occur in an aerosol. The compositions of the clusters often 
d i r e c t l y indicate sources. For example, particles containing Pb, CI 
and Br indicate auto exhaust. The clusters may also provide 
information on formation mechanisms. For example, a cluster 
composed mostly of calcium and sulfur but with a small amount of 
s i l i c o n and a few percent of transition metals suggests a CaSO^ 
part i c l e with a s i l i c a t e core which i s most l i k e l y formed as a 
result of combustion processes. 2) The next goal i s to reduce the 
mass of data to a tractable size, but i n a way that emission 
patterns can be easily discerned. This i s done by using the cluster 
centroids from representative samples to define the particle types 
i n the aerosol. Particles from the remainder of the data set are 
assigned to the various p a r t i c l e types. Histograms of the number of 
particles for each p a r t i c l e type, for each sampling s i t e and period, 
provide a rapid way to follow temporal and spatial emission 
patterns. The par t i c l e type c l a s s i f i c a t i o n s also are used as input 
for factor analysis. 3) The t h i r d goal i s to allow poorly populated 
clusters to be treated separately from the clusters containing many 
particles. An example of the need for t h i s separation arises i n the 
Phoenix aerosol. This i s because about 75% of the particles >1.0 urn 
i n diameter i n the Phoenix aerosol are quartz or alumino-silicate 
mineral particles which make i t d i f f i c u l t to monitor particles of 
similar size -that are not of crustal origin. Particles that are not 
represented by a cluster are l e f t unassigned. These unassigned 
particles are particularly useful for studying unusual events. 
However, t h i s requires that the cluster analysis i s s u f f i c i e n t l y 
inclusive so that only unusual particles are in the set of 
unassigned particles. Such separation i s particularly important i f 
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there i s a subsequent need to return to those particles for further 
analysis. 

There are three steps to nonhierarchical cluster analysis. The 
f i r s t i s to choose seedpoints; these are approximate points 
compositions from which to start cluster analysis. Choosing 
seedpoints i s by far the most c r i t i c a l step. Secondly, a cluster-
analysis algorithm i s applied to define the clusters. F i n a l l y , the 
s t a t i s t i c a l significance of the clusters must be determined. In 
other words, are the clusters well resolved or do they overlap? The 
three steps are detailed below. 

Choosing Seedpoints. A group of successive observations or a set of 
observations chosen at random from the data set may be used for 
seedpoints. However, the results of such simple procedures are 
often not r e l i a b l e . Seven different methods are considered for 
choosing seedpoints i n t h i s study. The f i r s t four are standard 
hierarchical techniques; single  complete  average (between merged 
groups) linkage and Ward
(<8) i s used to choos
method, seeks to minimize the sum of squared distances as an 
objective c r i t e r i o n . The f i r s t refinement method, here called the 
"refine" procedure, from the FASTCLUS procedure i n the SAS 
s t a t i s t i c s package (.£),is also considered as a seedpoint technique. 
F i n a l l y , a technique that w i l l be called the "merge" procedure 
completes the seedpoint location techniques. The l a t t e r three 
methods w i l l be described below. In each case, the general 
procedure starts by choosing a number of successive observations 
from the data set. This i n i t i a l set i s reduced to the f i n a l desired 
number of seedpoints by one of the seven methods. Euclidian 
distances are used. 

Nearest centrotype sorting uses the assumption that 
observations as seedpoints that minimize the sum of within-cluster 
distances best represent the clusters (θ). This i s i l l u s t r a t e d i n 
Figure 1. The observation chosen as a seedpoint i n Figure 1 a i s a 
much better choice because i t gives a smaller sum of distances (and 
squared distances). In the sorting procedure, each successive 
observation chosen as a seedpoint i s the observation that produces 
the greatest reduction i n the t o t a l sum of distances. Nearest 
centrotype sorting, while an excellent method, i s slow and so i s not 
par t i c u l a r l y useful i n an interactive mode. I t i s considered here 
mainly for comparison to the other methods. 

The "refine" procedure starts by assigning a t r i a l set of 
observations as seedpoints; i t then tests the remaining observations 
to see i f they are better seedpoints than those already chosen. The 
test i s carried out as follows. The distance from the observation 
to be tested to the closest seedpoint i s found, d.. This i s 
compared to the distance between the closest two seedpoints, d Q. I f 
d.<d , the seedpoint set remains unchanged and another observation 
i s tested. I f d.>d , then the test observation i s chosen as a 
seedpoint, and the seeapoint from the closest pair nearer the test 
observation i s rejected . For example, i n Figure 2a the observation 
to be tested i s shown as an open c i r c l e , and those observations that 
have previously been assigned as seedpoints are shewn as s o l i d 
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Figure 1. Nearest centrotype sorting minimizes the sum of 
distances of each observation to i t s closest centrotype as i n 
(a). 

Figure 2. a) "Refine" procedure, b) "merge" procedure for 
choosing seedpoints. In 2a) the observation represented by the 
open c i r c l e s would be accepted as a seedpoint. In both cases 
observation 2 would be rejected. 
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c i r c l e s . The distances to be compared are labeled. In t h i s case 
d t > d c ' s o t n e t e s t observation i s chosen as a seedpoint and 
seedpoint 2 i s rejected. 

In the "merge" procedure the i n i t i a l set of observations i s 
reduced by scanning the set repeatedly, each time locating the two 
observations that are closest to one another and rejecting the 
second of the two. This rejection i s repeated u n t i l the f i n a l 
desired number of seedpoints remains. For example, i n Figure 2b the 
data points are the i n i t i a l set of observations from the f u l l data 
set. The closest observations are indicated, and the second of them 
i s to be rejected. 

The "merge" procedure i s i n many ways the reverse of the 
commonly used "simple cluster seeking" method of Tou and Gonzalez 
(10). In their method a minimum seedpoint separation distance i s 
specified. The f i r s t observation i s chosen as a seedpoint. The 
next observation that i s greater than t h i s minimum distance away 
from the f i r s t i s also chosen  The rest of the data set i s then 
scanned for observation
from the seedpoints tha
the "merge" procedure i s that the minimum distance need not be 
specified; the choice of the minimum distance can be very d i f f i c u l t . 

The "merge" procedure i s chosen as the principal seedpoint 
selection method for t h i s study because i t most simply and rapidly 
carries out the goals l i s t e d above. In general, several methods 
should be used to ensure that the seedpoint set includes a l l 
important clusters. 

The "merge", "refine" and single linkage procedures are 
particularly good at finding low abundance clusters of atypical 
compositions. This property s a t i s f i e s goal 3, above. But because 
of t h i s , these procedures should be used with caution. This i s 
especially true when the number of clusters i s uncertain, which i s 
the normal case. Seedpoints may be located i n low-abundance, 
atypical clusters while some closely spaced but well resolved large 
clusters may be ignored. This may or may not be the desired result. 

The number of observations that can be tested as seedpoints i s 
limited by the size of the i n i t i a l set of observations chosen from 
the data. Because of time constraints, less than 10% of the data 
set i s commonly included i n the i n i t i a l set. To avoid t h i s 
l i m i t a t i o n , the seedpoints are chosen in a two-step process. A 
t r i a l set of seedpoints i s found i n the f i r s t round and then used 
for cluster analysis. The unassigned observations from the f i r s t 
round are then sampled for an additional set of seedpoints. The two 
sets are then combined. This allows many more of the observations 
in the data set to be sampled as possible seedpoints. In each of 
the two rounds the seedpoints can be chosen by one of the seven 
methods l i s t e d above. 

Cluster Algorithm. The Forgy variety of k-means cluster analysis 
(£) i s chosen because of i t s speed for large data sets. Forgy k-
means cluster analysis i s an i t e r a t i v e process. In the f i r s t 
i t e r a t i o n observations are assigned to the nearest centroid. This 
defines the i n i t i a l clusters. The composition of the observations i n 
each cluster are then averaged to fi n d approximate centroids. Let 
xk be the centroid vector for cluster k, with components xkj» for 
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a l l variables j . Then the average i s given by 

1=1 J χ 

for the n^ observations, x-fj, i n the cluster. I f the i n i t i a l 
seedpoints are far from the true centroids, then the true and 
approximate centroids so calculated may not be very close. This may 
be improved through successive iterations by using the approximate 
centroids as seedpoints and then repeating the assignment and 
averaging steps. This continues u n t i l the centroids no longer change 
on subsequent iterations. Cluster centroids are updated at the end 
of each assignment cycle. The Euclidian distance measure i s used. 
Outliers are excluded by choosing a maximum distance for cluster 
assignment. Convergence of the centroids may take as many as f i v e 
iterations of the k-mean

Cluster Significance 

There are two goals for significance testing. The f i r s t i s to 
estimate the number of clusters i n the data and the second i s to 
identify the amount of overlap between the various clusters. 
Unfortunately, no completely satisfactory s t a t i s t i c a l test exists. 
One i s faced with a d i f f i c u l t decision, either to ignore the problem 
or to make do with available testing methods. The simplest, most 
straight-forward test i s chosen for t h i s study, the sum of squares 
r a t i o test. Even though the test method may be flawed, i t i s 
necessary to underscore the importance and usefulness of s t a t i s t i c a l 
measures of cluster separation. 

The sum of squares r a t i o test compares two clusters by finding 
the r a t i o of the between-clusters sum of squares (B) to the within-
clusters sum of squares(W). This i s based on the well known sum of 
squares decomposition, 

Τ = Β + W 

where Τ i s the t o t a l sum of squares for the two clusters. For each 
cluster k with nk members and centroid vector x^, 

2 n k 
Τ = 2 2 (x!f - x)f(xÎ - x) 

k=1 i=1 - 1 ~ " 1 

where x i i s observation vector i from cluster k and χ i s the mean 
vector" over a l l the observations i n the data set. The prime 
indicates vector transposition. Then 

2 - - 2 Β = n^x^j - x) + n 2 ( x 2 - x) 

and 
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2 n k 2 n k 

k=1 i=1 1 k 1 k k=1 i=1 1 

The term dik i s the Euclidian distance between observation i and 
centroid k. The test s t a t i s t i c i s then 

C = B/W 

The C - s t a t i s t i c i s used to test the significance of pairs of 
clusters under the n u l l hypothesis that the observations are a 
sample from a single normal population. Hartigan (H) and Engleman 
and Hartigan (12) compiled a set of percentage points for C for 
clustering on one variable» assuming a normal di s t r i b u t i o n of the 
observations for optimal clustering obtained by maximizing B/W. 
These percentage points cannot s t r i c t l y be used to test the 
significance of clusters i n t h i s study since a) the clustering 
occurs over many variable
are usually at best onl
observations are not normally distributed. However, applying the 
C - s t a t i s t i c i n a simulation study, using k-means clustering of 
synthetic data over 3 to 9 variables generated using a rectangular 
di s t r i b u t i o n , shows the Engleman and Hartigan percentage points to 
be useful. The percentage points seem to be rather insensitive to 
the number of variables. A low confidence l e v e l (50%) i s normally 
chosen when applying the percentage points to actual data. 

Regardless of the f a i l i n g s of a given s t a t i s t i c a l test, i t i s 
the philosophy of the use of the test that i s most important. This 
i s especially clear when addressing the problem of estimating the 
number of clusters i n the data set. In some standard s t a t i s t i c a l 
packages t h i s i s normally handled i n the following way. Cluster 
analysis i s carried out by intentionally using too many seedpoints. 
The distance between the resulting centroids or the variance of the 
variables i n each cluster i s then used to decide which clusters to 
combine and which clusters to s p l i t . Using the intercentroid 
distance as a c r i t e r i o n has the danger of combining two well 
resolved but closely spaced clusters. Using the variance as a 
c r i t e r i o n has the danger of a r b i t r a r i l y dividing a single large 
cluster. However, using the sum of squares r a t i o , as i n t h i s study, 
i s a more r e l i a b l e c r i t e r i o n because i t takes into account both the 
between-centroid distance and the dispersion of the clusters. 

In t h i s study, we purposely started with too many seedpoints. 
The number of seedpoints for analysis and the f i n a l seedpoint set i s 
determined i n the following way. After an i n i t i a l round of cluster 
analysis, the seedpoint which gives the largest number of test 
f a i l u r e s i s rejected. After a seedpoint i s rejected cluster 
analysis i s repeated. This process continues u n t i l the number of 
unassigned particles begins to increase rapidly and the number of 
si g n i f i c a n t clusters decreases. In our case, i t i s quite l i k e l y 
that there are several clusters i n the f i n a l set that are not 
si g n i f i c a n t (especially i n the group of alumino-silicate clusters) , 
but i t i s necessary to keep some of them i n order adequately to 
describe the variations that occur when the centroids are used i n 
discriminant analysis for other sampling site s and periods. This 
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situation arises i n part because k-means analysis works best on 
spherical clusters, but many clusters are certainly not spherical. 
In addition, the natural v a r i a b i l i t y of aerosol particles 
undoubtedly produces signif i c a n t overlap between clusters. Since 
there i s , at present, no adequate s t a t i s t i c a l test for significance 
and no rapid method for clustering non-spherical clusters, the 
actual use of the cluster centroids for the c l a s s i f i c a t i o n of 
par t i c l e s must serve as the test for the adequacy of the cluster 
analysis. That i s , the usefulness and v a l i d i t y of the results i s 
the ultimate test of the cluster analysis. 

P a r t i c l e C l a s s i f i c a t i o n 

P a r t i c l e c l a s s i f i c a t i o n i s carried out using a nearest neighbor 
c r i t e r i o n with Euclidian distance. Histograms of the size 
d i s t r i b u t i o n within each p a r t i c l e type can be generated i n addition 
to p a r t i c l e number versus p a r t i c l e type histograms  Particles are 
not c l a s s i f i e d i f they ar
from the nearest centroid
elements i n the unassigned particles are useful for following 
unusual events. (Linear discriminant analysis i s not used because 
of the extreme inhomogeneity of the cluster variance-covariance 
matrices i n the data.) 

A particularly powerful use of the c l a s s i f i c a t i o n results i s i n 
factor analysis. This w i l l help to uncover interrelationships among 
the p a r t i c l e types and w i l l provide additional information for 
source attribution. The results of the factor analysis are also 
helpful for judging the significance of the cluster analysis, i n 
that i f the occupations of two similar p a r t i c l e types are 
uncorrelated over several samples then t h i s indicates that the 
par t i c l e types and the clusters from which they are derived are 
s i g n i f i c a n t l y different. 

Experimental Methods 
The elemental compostion of the individual particles used i n t h i s 
study were determined by energy-dispersive, X-ray spectrometry 
(EDS). The data were acquired using an automated analytical 
scanning electron microscope (JEOL JSM-35). The automation system 
includes both sample stage and electron-beam automation, allowing 
unattended operation. Elemental compositions were obtained from the 
p a r t i c l e X-ray spectrum by integration of the background-corrected 
X-ray peak i n a region-of-interest about one of the characteristic 
X-ray l i n e s for each element. The region of interest integrals are 
converted to relative abundance concentrations by dividing the 
integral for each element by the sum over a l l the elements detected 
i n the p a r t i c l e . No other variable normalization was used i n order 
to avoid the inclusion of noise i n the form of analytical 
uncertainty due to the r e l a t i v e l y large detection l i m i t s inherent i n 
EDS analysis. 

Data for 31 elements can be rapidly determined but result i n 
some interferences between elements. No spectral curve f i t t i n g or 
matrix (ZAF) correction schemes were used i n t h i s survey study. ZAF 
correction does not seem to markedly aid the cluster analysis 
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process, presumably because the natural dispersion of the clusters 
i s so large and due to the errors i n applying thick f i l m ZAF 
corrections to small particles. The elements used i n t h i s study were 
Na, Mg, A l , S i , Fe, K, Ca, S, P, CI, T i , Mn, Cu, Zn, Cr, Ni, As, Br 
and Pb. The particles for t h i s study were collected on Nuclepore 
f i l t e r s . P articles i n the size range of 1 to 15 urn i n diameter were 
analyzed. 

Cluster analysis i s f a r from an automatic technique; each stage 
of the process requires many decisions and therefore close 
supervision by the analyst. I t i s imperative that the procedure be 
as interactive as possible. Therefore, for t h i s study, a menu-driven 
interactive s t a t i s t i c a l package was written for PDP-11 and VAX (VMS 
and UNIX) series computers, which includes adequate computer 
graphics c a p a b i l i t i e s . The graphical output includes a variety of 
histograms and scatter plots based on the raw data or on the results 
of principal-components analysis or canonical-variates analysis 
( l i t ) . Hierarchical cluster trees are also available  A l l of the 
methods mentioned i n t h i
the package. 

Results 
The seven seedpoint methods were tested using a data set containing 
1000 p a r t i c l e s from a representative aerosol sample collected i n 
downtown Phoenix. The f i r s t 70 successive observations were chosen 
from the data as the i n i t i a l set for choosing seedpoints for each 
method. Each of the seven methods was applied to reduce t h i s set to 
30 seedpoints. The 30 seedpoints were then used i n k-means cluster 
analysis. No two of the seedpoint sets were i d e n t i c a l ; however, 25 
out of 30 f i n a l clusters were found i n each set. The unique 
seedpoints were found to be s t a t i s t i c a l l y i n s i g n i f i c a n t , and i n 
general, the different methods seemed to be dividing large complex 
clusters i n s l i g h t l y different ways. Single linkage gave the most 
unusual set of seedpoints and would seem to be an excellent 
companion method to the "merge" procedure, especially since i t gave 
an unusually small t o t a l number of test f a i l u r e s . However, for 
general use single linkage does not do a good enough job on clusters 
with ty p i c a l composition, such as the alumino-silicate clusters. 
Ward's method gave a s l i g h t l y smaller number of test f a i l u r e s than 
complete and average linkage, but otherwise a l l three gave 
comparable results. Nearest centrotype sorting also gave comparable 
results with t h i s data set. I t s use i s probably warranted only for 
clustering data containing similar, closely spaced clusters with few 
atypical clusters. The "refine" method gave the largest number of 
pairwise test f a i l u r e s . The "merge" procedure also gave a 
r e l a t i v e l y large number of test f a i l u r e s , but the seedpoints were 
well balanced between the clusters of typical and atypical 
composition. A l l of the methods gave only 2 clusters that contain 
no s i g n i f i c a n t test f a i l u r e s , except "refine" which gave only one. 
However, a l l seven methods gave the same number of clusters with 
less than 4 test f a i l u r e s . The differences between the methods 
would have been more pronounced i f the f i n a l number of seedpoints 
had been smaller. The "merge" method was used i n a l l of the 
following studies, with the two-round procedure, described above, 
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for choosing seedpoints. The sum-of-squares ra t i o test was used to 
eliminate some of the nonsignificant clusters. 

These methods, when applied to the downtown Phoenix aerosol 
sample, produced a satis f y i n g range of par t i c l e types and l e f t 
unassigned only about 4% of the particles (Table I ) . The major 
pa r t i c l e type was quartz which accounted for 19% of the particles. 
Various alumino-silicate types were the next most abundant. Easily 
i d e n t i f i a b l e types included clusters r i c h i n only one to three 
elements, including iron (7%), calcium (3%), calcium-silicon-iron 
(4%), calcium-sulfur (1%), lead (3%), lead-chloride-bromide (3%) and 
titanium (2%). The abundances of these p a r t i c l e types, indicated i n 
parentheses, vary widely from s i t e to s i t e . Many particles r i c h i n 
heavy metals were found i n the unassigned group at t h i s point. 

Table I. Cluster Composition for Representative 
Phoenix Aerosol Sample 

Elemental Similar Mineral^ % Abundance 
Composition 

S i K Al Fe Orthoclase 7 
Si Al Κ Fe Muscovite 15 
S i Al Fe Ca Albite/Montmorillonite 14 
S i Ca Fe Al (Epidote) 6 
Si Fe A l Κ Bi o t i t e 4 
Si Quartz 19 
Fe S i Al Mg Ripidolite/Chlorite 2 
Fe Magnetite 7 
Ca S i Fe Pyroxene 4 
Ca Calcite 3 
Ca S S i Gypsum 1 
Ca S i Fe (Tremolite/Actinolite) 2 
Ti S i (Rutile) 2 
Ti Fe S i 0.5 
Κ CI S i 0.5 
Pb CI Br 3 
Pb S i 3 
Fe Zn S i S 1 

1 S S i Na 
1 
1 

Unassigned 4 
a S i indicates that S i may be present i n the particles 
or may be due to a spectral a r t i f a c t (carbon absorp­
ti o n edge). 
( ) indicates only a possible mineral assignment for 

the cluster. 

In a further test of the clustering procedure, analyses of 
particles of standard clay minerals, r i p i d o l i t e , montmorillonite, 
nontronite as well as muscovite mica, were clustered. The procedure 
easily i d e n t i f i e d the different minerals, giving r i s e to well 
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resolved clusters. These results, and results from other standard 
mineral par t i c l e s , were compared to the clusters determined from the 
Phoenix aerosol and l i s t e d i n Table I. This comparison indicated 
that, while many clusters were well resolved (e.g., those mentioned 
above), the alumino-silicate clusters i n the Phoenix samples were 
probably mixtures of several mineral types. The minerals indicated 
i n Table I have been i d e n t i f i e d i n the Phoenix aerosol in the 5 to 
50 urn diameter size range (JjJ). They were l i s t e d not as absolute 
assignments but as suggestions for the most prominent mineral type 
i n the given cluster. Obviously, many of the particles were not 
necessarily crustal i n orig i n . For example, there are many sources 
of iron and iron oxide particles other than magnetite. Also, 
evidence from other site s indicated that the titanium cluster may 
result from an anthropogenic source. 

Table I I . C l a s s i f i c a t i o n Results for Chandler  Arizona
as percen

Date Quartz Orthoclase Muscovite Calcite Pyroxenes 

Feb 22 8.8 8.3 21.3 1.3 4.0 
23 10.0 7.5 22.0 4.3 5.8 
24 8.1 8.7 32.0 2.2 4.2 
26 11.9 6.5 24.7 2.0 1.7 
27 15.8 7.7 18.2 1.1 1.7 
28 10.6 9.4 21.6 1.4 2.0 

Mar 3 10.6 5.6 19.3 8.0 5.2 
4 10.6 6.4 22.5 3.5 1.8 

Using the p a r t i c l e types outlined i n Table I, a series of 
samples from Chandler, Arizona, were c l a s s i f i e d . The samples were 
collected over a two- week period i n l a t e February and early March. 
The results for several p a r t i c l e types are l i s t e d i n Table I I . The 
f i r s t interesting result i s that muscovite i s always more abundant 
then quartz, in contrast with the downtown Phoenix sample. In 
addition, the pyroxene, muscovite and c a l c i t e types are negatively 
correlated, over time, with quartz. The c l a s s i f i c a t i o n results were 
used as input for principal components analysis, with the 
observations being the different samples and the variables the 
pa r t i c l e types. The f i r s t principal component has a predominant 
weighting on muscovite, explaining 52% of the variance of the data 
set. The second principal component has strong positive weightings 
on the pyroxenes and c a l c i t e and strong negative weightings on 
quartz, explaining 23% of the variance. Therefore the crustal 
particles show a s t r i k i n g difference i n behavior, counter to what 
one would have expected. This does not appear to be simply random 
behavior because the sample scores on principal component two show a 
good correlation with the east-west direction of upper level winds. 
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Summary 

K-means cluster analysis i s an excellent method for the reduction of 
individual-particle data, i f extra clusters are used to allow for 
the non-spherical shape and natural v a r i a b i l i t y of atmospheric 
particles. The "merge" method for choosing seedpoints i s useful for 
detecting the types of low abundance particles that are interesting 
for urban atmospheric studies. Application to the Phoenix aerosol 
suggests that the a b i l i t y to discriminate between various types of 
crustal particles may yie l d valuable information i n addition to that 
derived from pa r t i c l e types more commonly associated with 
anthropogenic a c t i v i t y . 
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Monitoring Polycyclic Aromatic Hydrocarbons 
An Environmental Application of Fuzzy C-Varieties Pattern Recognition 
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Data collected in a two year program to 
monitor polycyclic aromatic hydrocarbons in 
the vicinity of Sundsvall, Sweden, were 
analyzed by the Norwegian Institute for Air 
Research (NILU) to (1) determine the 
possibility of identifying emission sources, 
and (2) quantify the contribution from a 
local aluminum plant. NILU used the fuzzy c­
-varieties clustering program FOSE as one of 
two methods for c a r r y i n g out the 
investigation. The original study was 
repeated using recent improvements in the 
fuzzy c-varieties technique and using the 
r e c u r s i v e c l u s t e r i n g opt ion and a 
quantitative measure of cluster quality which 
are features of a new program, FCVPC. The 
results of of these two investigations are 
discussed and compared. In general, the 
results and conclusions reached were in good 
agreement. 

In 1 9 7 8 , the e m i s s i o n of ben zo (a ) pyr ene (BaP) from an 
aluminum p l a n t i n the v i c i n i t y of S u n d s v a l l , Sweden, was 
e s t i m a t e d to be about f o u r t i m e s the t o t a l amount 
emitted from a l l the motor v e h i c l e s i n that country. As 
might be e x p e c t e d , the r e s u l t of t h i s e s t i m a t e caused 
c o n s i d e r a b l e concern, and a survey of the a i r q u a l i t y i n 
the S u n d s v a l l a r e a was made i n 1 9 8 0 - 8 1 . The program 
m o n i t o r e d c o n c e n t r a t i o n s o f p o l y c y c l i c a r o m a t i c 
h y d r o c a r b o n s (PAH) and f l u o r i d e i n ambient a i r , w i t h 
samples being c o l l e c t e d once each week. Concentrations 
of f l u o r i d e and m e t e o r o l o g i c a l data were measured by the 
aluminum company l a b o r a t o r y , w h i l e PAH c o n c e n t r a t i o n s 
were d e t e r m i n e d by the Norwegian I n s t i t u t e f o r A i r 
Research (NILU). 
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In a d d i t i o n to studyi n g the behaviour and t r a n s p o r t 
of the PAH compounds, NI LU was asked to s t u d y the 
p o s s i b i l i t i e s of i d e n t i f y i n g the main emission sources 
of PAH, and of q u a n t i f y i n g the c o n t r i b u t i o n s from the 
a l u m i n u m p l a n t . N I L U e m p l o y e d two m e t h o d s o f 
i n v e s t i g a t i n g these questions. One of those approaches 
i n v o l v e d the a p p l i c a t i o n of a r e l a t i v e l y new f a m i l y of 
n o n - h i e r a r c h i c a l c l u s t e r i n g a l g o r i t h m s , the f u z z y c-
v a r i e t i e s (FCV) a l g o r i t h m s (Bezdek, e t . a l . , J _ ) . 

One purpose of t h i s paper i s to d e s c r i b e the FCV 
c l u s t e r i n g a l g o r i t h m s , using the NILU i n v e s t i g a t i o n as 
an e x a m p l e o f t h e i r a p p l i c a t i o n t o environmental 
c h e m o m e t r i c s . Another purpose i s t o i n t r o d u c e a new 
measure of c l u s t e r v a l i d i t y f o r these a l g o r i t h m s . This 
m e a s u r e , t h e y_a_l_i_d_^t_y d i s c _ r i_m i n a η t_, p r o v i d e s a 
q u a n t i t a t i v e replacement f o r the s u b j e c t i v e e v a l u a t i o n s 
of c l u s t e r q u a l i t y whic
a p p l i c a t i o n s of FC
NILU s t u d y . A p a r t o f t h e NILU s t u d y has been r e ­
i n v e s t i g a t e d u s i n g the v a l i d i t y d i s c r i m i n a n t , both t o 
i l l u s t r a t e i t s use and to attempt to f u r t h e r v a l i d a t e 
the c o n c l u s i o n s of that i n v e s t i g a t i o n . 

The FCV C l u s t e r i n g Method 

In the f o l l o w i n g , l e t X = {x«j,..,xn} denote a d a t a s e t 
c o n s i s t i n g o f η measurement v e c t o r s , x k , each w i t h d 
f e a t u r e s ( a t t r i b u t e s ) , x k i ; i . e . , x k = ( xk 1 » ·· » xkd ̂  · 

There i s a b a s i c d i f f e r e n c e between most of the 
b e t t e r known methods o f c l u s t e r a n a l y s i s and the FCV 
f a m i l y o f c l u s t e r i n g a l g o r i t h m s . T h a t d i f f e r e n c e 
c o n c e r n s t h e t r a d i t i o n a l r e q u i r e m e n t t h a t e v e r y 
measurement v e c t o r b_e_ e v e n t u a 11 y a s s i g n e d to one , and 
o n l y one, o f t_he_ c l u s t e r c l a s s e s . In FCV c l u s t e r i n g , 
that requirement i s r e p l a c e d with a p a i r of c o n d i t i o n s : 

( 1 ) t h a t a measurement v e c t o r may s i m u l t a n e o u s l y 
" b e l o n g " t o more than one of the d a t a c l a s s e s , w i t h i t s 
degree of_ membership i n a p a r t i c u l a r c l u s t e r b e i n g 
represented by some v a l u e i n the i n t e r v a l Γρ,ΐΠ; 

( 2 ) t n a t t h e t o t a l " membership" o f a g i v e n 
measurement v e c t o r o v e r a l l the c l u s t e r s must sum to 
u n i t y . 

I f the n o t a t i o n u i k = ^ ( x ^ ) i s used to r e p r e s e n t 
the degree of membership of the measurement v e c t o r x k 

(k= 1 , 2,..,n) i n c l u s t e r i ( i = 1 , 2 ,.., c ), then the two 
c o n d i t i o n s above can be g i v e n a convenient mathematical 
statement : 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



132 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

( 1 f ) 0 <; u i k < 1 ( f o r every i and k) 

c 
( 2 f ) ι u*v = 1 , ( f o r every k) 

i = i l i c 

where c i s the p r e s p e c i f i e d number of c l u s t e r c l a s s e s . 

The " f u z z y " d e s i g n a t i o n f o r t h e s e a l g o r i t h m s i s 
d e r i v e d from the c o n c e p t o f s h a r e d membership. R u s p i n i 
(2) p r o v i d e d a p i o n e e r i n g a p p l i c a t i o n of f u z z y 
c l u s t e r i n g , when he r e c o g n i z e d that the formal f u z z y set 
l o g i c i n troduced by Zadeh (3) seemed i d e a l l y s u i t e d f o r 
the i m p r e c i s i o n e n c o u n t e r e d i n c l u s t e r models. I t was 
not u n t i l Dunn and Bezdek (£) p u b l i s h e d t h e i r Fuzzy 
ISODATA a l g o r i t h m , however, before the a p p l i c a b i l i t y and 
u s e f u l n e s s of t h i s type of c l u s t e r i n g procedure became 
more w i d e l y a p p r e c i a t e d
p u b l i s h e d i n t h
g e n e r a l i z i n g the Fuzzy ISODATA a l g o r i t h m s . 

S i n c e t h a t time they have been used i n a wide 
v a r i e t y o f c l u s t e r a p p l i c a t i o n s , and have p r o v i d e d a 
v e r y p o w e r f u l new t e c h n i q u e f o r m u 1 t i ν a r i a b 1 e d a t a 
a n a l y s i s . 

An r-dimensiona1 1 i n e a r v a r i e t y i n f e a t u r e space ffi, d 

can f o r m a l l y be d e f i n e d by an e q u a t i o n o f the form 

r 
(3) V(v;d 1 ,d 2, . . ,d p) = { y e m d | y = ν + ^ t j d j } 

where 0 < r < d ; ν i s a f i x e d v e c t o r i n R d ; the s c a l a r s t Λ 
i η d e ρ e n"3 e n t l y t a k e on a l l v a l u e s i n C - œ , + οο)· and the 
spanning v e c t o r s d. form a set of r orthonormal v e c t o r s 
i n ] R D . In the case that r=0, the l i n e a r v a r i e t y c o n s i s t s 
o n l y of the p o i n t ν i n & d. I f r = 1, the l i n e a r v a r i e t y 
forms a l i n e t h r o u g h ν i n the d i r e c t i o n d^. I f r = 2, the 
l i n e a r v a r i e t y c o n s i s t s of a l l of the v e c t o r s f a l l i n g i n 
the p l a n e c o n t a i n i n g ν and d e f i n e d by d-j and d 25 and so 
on. The e u c l i d e a n orthogonal d i s t a n c e of a measurement 
v e c t o r x k from a l i n e a r v a r i e t y V i i s d e f i n e d by the 
equation 

(4) D i k = D C x ^ V ^ = ( ( x k - v 1 ) T ( x k - T 1 ) -

The geometric i n t e r p r e t a t i o n of the E u c l i d e a n o r t h o g o n a l 
d i s t a n c e of a point to a l i n e i s shown i n Figure 1. 
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With these d e f i n i t i o n s , the mathematical d e r i v a t i o n 
of the FCV f a m i l y o f c l u s t e r i n g a l g o r i t h m s depends 
upon minimizing the g e n e r a l i z e d weighted sum-of-squared -
e r r o r o b j e c t i v e f u n c t i o n a l 

_ c η 
(5) J(U,V) = Σ Σ ( u i k ) m ( D l k ) ^ 

i = 1 k=1 

where V= {V^,V 2> · ·,V Q} i s a s e t of c l i n e a r v a r i e t i e s , 
a l l of the same d i m e n s i o n , and the m i n i m i z a t i o n i s 
c a r r i e d out f o r a f i x e d 1 £ m < «> o v e r a l l membership 
v a l u e s u i k and f a m i l i e s o f c l i n e a r v a r i e t i e s , V . The 
v a l u e f o r m i s u s u a l l y chosen as m = 2 . Higher v a l u e s may 
be chosen i f i t i s d e s i r e d to a t t a c h l e s s weight t o the 
imp o r t a n c e o f s m a l l membership v a l u e s . I f m= 1 , the 
s o l u t i o n of the m i n i m i z a t i o n p r o b l e m r e d u c e s to the 
s p e c i a l case wher
( i . e . , a " h a r d " , a
Bezdek, e t . a l . , J _ ) . 

Necessary c o n d i t i o n s f o r minimizing Equation 5 are 
g i v e n by the equations (Bezdek, e t . a l . , J_) : 

( 6 ) u l k = \ j ( D l k / D j k > 1 / ( i n ~ 1 ) , V ( i , k ) 

(7) v ± = \^ ( u i k ) m ( u i k ) m ' V l 

where the spanning v e c t o r s (d * -j ,d Λ 2,.. ,d i r ) re q u i r e d f o r 
computing the d i s t a n c e s i n E q u a t i o n 6 are the r u n i t 
e i g e n v e c t o r s corresponding to the r l a r g e s t e i g e n v a l u e s 
of the, c, "fuzzy" s c a t t e r matrices 

η 
(8) W± = Σ ( u i k ) m ( x k - v i ) ( x k - v i ) T (1 = 1,2,..,o). 

k= 1 

The FCV f a m i l y o f a l g o r i t h m s c o n s i s t o f a P i c a r d 
i t e r a t i o n to an approximate s o l u t i o n of these equations, 
w i t h the s i n g u l a r case (where a t l e a s t one of the 
di s t a n c e s D i k = 0 ) taken care of s e p a r a t e l y . 

In o r d e r to get an i d e a o f how the a l g o r i t h m s 
a c t u a l l y work, l e t us suppose i t i s d e s i r e d to f i n d c = 2 
l i n e a r c l u s t e r s ( r = 1 ) f o r the data o f F i g u r e 2 . The 
i t e r a t i v e s o l u t i o n o f E q u a t i o n s 6 - 8 i s i n i t i a t e d by 
guessing a s t a r t i n g membership matrix 
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Figure 2. Two l i n e a r c l u s t e r s , showing s t a r t i n g c l a s s membership 
assignments. 
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(9) U r 

u11 u12 '· u i k l1n 

u 2 1 u 2 2 .. u 2 k .. u 2 n 

As an e x a m p l e , s u p p o s e t h e s t a r t i n g g u e s s i s t o 
p a r t i t i o n the data of F i g u r e 2 i n t o the two "hard" 
c l u s t e r s i n d i c a t e d by the dashed l i n e s ( i . e . , t h e r e i s 
no " s h a r e d " membership). The m a t r i x U Q , i n t h i s c a s e , 
would c o n s i s t of a l l 1fs or 0 fs. 

The f i r s t s t e p i s to use E q u a t i o n 7 to compute the 
two weighted means v  and ν · Since a l l of the s t a r t i n g 
u i k a r e e i ^ h e r 0 o
the usual mean v a l u e s
h a r d p a r t i t i o n of the i n p u t d a t a . When the u i k i n c l u d e 
v a l u e s between 0 and 1, the v i

, s are o f t e n r e f e r r e d t o 
as "fuzzy" c l u s t e r c e n t e r s . 

Having computed the centers v^ and v 2 , the next step 
i s to f i n d a be s t f i t of the data i n each c l u s t e r t o 
l i n e s r u n n i n g t h r o u g h the r e s p e c t i v e c e n t e r s . T h i s i s 
done by computing the weighte d s c a t t e r m a t r i c e s of 
E q u a t i o n 8. The e i g e n v e c t o r s o f t h o s e m a t r i c e s d e f i n e 
the d i r e c t i o n s of the l i n e s . A connection with the ideas 
of p r i n c i p a l component a n a l y s i s may be no t e d a t t h i s 
p o i n t . The i d e a i s pursued f u r t h e r by Gunderson and 
Jacobse n (50-

The f i n a l s t e p i n the f i r s t i t e r a t i o n i s to compute 
new membership v a l u e s u l k u s i n g E q u a t i o n 6 and the 
di s t a n c e d e f i n i t i o n D i k of Equation 4. 

The a l g o r i t h m continues by using the new membership 
m a t r i x as the s t a r t i n g membership m a t r i x f o r a second 
i t e r a t i o n through the same equations. The i t e r a t i o n s are 
a l l o w e d to c o n t i n u e u n t i l a s t o p p i n g c o n d i t i o n i s 
reached; u s u a l l y when the maxinum change i n membership 
v a l u e s from one i t e r a t i o n to the next i s l e s s than some 
p r e s p e c i f i e d t h r e s h o l d v a l u e . Windham (6) showed t h a t 
the i t e r a t i o n s w i l l always reach such a st o p p i n g p o i n t , 
r e g a r d l e s s of how s m a l l the t h r e s h o l d i s set. 

The a l g o r i t h m s can be i n t e r p r e t e d i n t h i s case as 
t r y i n g to o b t a i n a " b e s t " s i m u l t a n e o u s f i t of the d a t a 
to two s t r a i g h t l i n e s ( i n the sense of m i n i m i z i n g 
E q u a t i o n 5). I f r had been chosen as r = 0 i n the above 
problem, the d i s t a n c e s D i k would have reduced to j u s t 
the u s u a l E u c l i d e a n d i s t a n c e of the measurement v e c t o r s 
to the r e s p e c t i v e c e n t e r s , and the r e s u l t i n g c l u s t e r 
"shapes" would have been f o r c e d to a be s t "round", 
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i n s t e a d of l i n e a r , f i t o f the d a t a . In g e n e r a l , i t i s 
p o s s i b l e u s i n g the FCV a l g o r i t h m s to l o o k f o r a b e s t 
s i m u l t a n e o u s f i t o f t h e d a t a t o any c, l i n e a r , 
hypersurfaces of common dimension r < d, by s e t t i n g r to 
an a p p r o p r i a t e v a l u e at the beginning of the c l u s t e r i n g 
run. This a very v a l u a b l e f e a t u r e , i n that i t a l l o w s the 
i n v e s t i g a t o r g r e a t e r f l e x i b i l i t y i n attempting to seek 
out the s t r u c t u r e i n the d a t a than i s a v a i l a b l e w i t h 
most o t h e r c l u s t e r i n g methods. An a d a p t i v e v e r s i o n of 
the FCV a l g o r i t h m s was p r o v i d e d by Gunderson (7^), which 
i s c a p a b l e of s e e k i n g out c l u s t e r s of mixed l i n e a r 
shapes i n the same data s e t . 

The computation of the shared membership v a l u e s u i k 

by Equation 6 u s u a l l y r e s u l t s i n r e l a t i v e l y s m a l l v a l u e s 
being assigned to o u t l i e r s or n o i s y measurement v e c t o r s . 
It i s not d i f f i c u l t to l o c a t e these v a l u e s i n the f i n a l 
membership m a t r i x ,
can be s i n g l e d out f o

The u , k v a l u e s p l a y e d an important r o l e i n the NILU 
i n v e s t i g a t i o n . They were used to a s s e s s the r e l a t i v e 
" q u a l i t y " o f a c l u s t e r c o n f i g u r a t i o n r e l a t i v e t o 
competing c o n f i g u r a t i o n s . By c l u s t e r i n g the d a t a t o 
d i f f e r e n t c o n f i g u r a t i o n s , and comparing the amount of 
s h a r i n g between c l u s t e r s i n each c a s e , a s u b j e c t i v e 
o p i n i o n c o u l d be formed as t o which seemed to p r o v i d e 
the most n a t u r a l p a r t i t i o n i n g . In the next s e c t i o n we 
d e s c r i b e a more q u a n t i t a t i v e a p p r o a c h d i r e c t e d toward 
a n s w e r i n g the same q u e s t i o n , which a l s o makes use o f 
shared membership weighting. 

The V a l i d i t y D i s c r i m i n a n t 

The v a l i d i t y d i s c r i m i n a n t d i s c u s s e d i n t h i s s e c t i o n i s 
the d e s c e n d a n t of an e a r l i e r c l u s t e r v a l i d i t y measure 
used by Gunderson (80 to a s s e s s the q u a l i t y of c l u s t e r 
c o n f i g u r a t i o n s obtained i n an a p p l i c a t i o n of the Fuzzy 
ISODATA a l g o r i t h m s . I t i s c l o s e l y r e l a t e d to a method 
s u g g e s t e d by Sneath (9^) f o r t e s t i n g the d i s t i n c t n e s s , 
i.e . s e p a r a t i o n , of two c l u s t e r s , and a l s o borrows from 
the i d e a s of F i s h e r ' s l i n e a r d i s c r i m i n a n t t h e o r y (see 
c h a p t . 4, Duda and Hart,(1_0). The v a l i d i t y d i s c r i m i n a n t 
attempts to measure the s e p a r a t i o n between the c l a s s e s 
of a c l u s t e r c o n f i g u r a t i o n u s u a l l y , but not n e c e s s a r i l y , 
obtained by a p p l i c a t i o n of the FCV a l g o r i t h m s . A b r i e f 
d e s c r i p t i o n f o l l o w s : 

I t i s assumed that the membership v a l u e s f o r a l l of 
the measurement v e c t o r s , and the w e i g h t e d c e n t e r s , v i , 
a r e known f o r an a r b i t r a r y p a i r ( i , j ) of the c c l a s s e s . 
In a n a l o g y w i t h F i s h e r ' s l i n e a r d i s c r i m i n a n t t h e o r y , 
d e f i n e the w e i g h t e d ( f u z z y ) t o t a l s c a t t e r o f the p a i r 
C i t J ) by 
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(10) T l j = ^ [ ( u l k ) » + ( u J k ) » ~ ( x k - m i j ) ( x k - m i j ) T 

where the " p a i r center", πι ±j, i s gi v e n by 

(11) 
η 
Σ 

k=1 
( u i k ) m + ( u ^ ) ^ ! x L 

η 
Σ 

k=1 
( u l k ) » + ( u j k ) m ] 

The weighted (fuzzy) w i t h i n - c l u s t e r s c a t t e r of the p a i r 
( i , j ) i s d e f i n e d by 

(12) W±j = Σ ( u l k ) ( x k - v i ) ( x k - v i )
k= 1 

Σ . ( u j k ) m ^ k " V j ) ( x k - v j ) T 

k=1 

and the weighted (fuzzy) between-cluster s c a t t e r of the 
p a i r by 

( 1 3 ) Β i j 

( Σ ( u l k ) m + Σ ( u j k ) m ) 
η η 

( u ± k ) » + 

k=1 k=1 

It i s not d i f f i c u l t t o show t h a t 

< v i - V T 

(14) 
T i j = W i j + B i j 

The v a l i d i t y d i s c r i m i n a n t i s t h e n d e f i n e d by t h e 
extremum problem 

(15) V d = maximize { ( z T B , 1 ζ ) / (z TW,,ζ)} 

where ζ i s any v e c t o r i n measurement space3R d. I t i s 
w e l l known t h a t the s o l u t i o n to t h i s p r o b l e m can be 
obtained by s o l v i n g the g e n e r a l i z e d e i g e n v a l u e problem 

(16) B ± j z = λ W l j Z 
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The l a r g e s t e i g e n v a l u e so obtained i s the maximal v a l u e 
o f t h e r a t i o , and t h u s p r o v i d e s the v a l u e o f t h e 
v a l i d i t y d i s c r i m i n a n t V d · 

The denominator of the r a t i o can be i n t e r p r e t e d as 
the w e i g h t e d s c a t t e r of the two c l a s s e s about t h e i r 
r e s p e c t i v e c e n t e r s , as m e a s u r e d on a l i n e i n t h e 
d i r e c t i o n of the maximizing e i g e n v e c t o r z. The numerator 
measures the d i s t a n c e between the two c l u s t e r c e n t e r s , 
p r o j e c t e d upon the same l i n e . 

The o b j e c t i v e i n s o l v i n g the maximization problem i s to 
f i n d t h a t l i n e on which t h i s s e p a r a t i o n r a t i o has i t s 
b e s t , or h i g h e s t , v a l u e . The s e p a r a t i o n between a l l 
p a i r s i n a g i v e n c l u s t e r i n g can then be compared to the 
s e p a r a t i o n between c l u s t e r p a i r s f o r a c o m p e t i n g 
c o n f i g u r a t i o n . 

Such a measur
w i l l work b e s t when i t can be assumed t h a t the c l a s s e s 
approximate m u l t i v a r i a t e normal d i s t r i b u t i o n s . That i s a 
r e a s o n a b l e a s s u m p t i o n f o r the c l a s s e s modeled by the 
output of the FCV a l g o r i t h m s . 

As a f i n a l r e m a r k , n o t e t h a t t h e m e m b e r s h i p 
w e i g h t i n g v a l u e s i n the d e f i n i t i o n of the v a l i d i t y 
d i s c r i m i n a n t are a l s o r a i s e d to the power m. u s u a l l y 
t h i s v a l u e w i l l be chosen t o be the same as t h a t used to 
a c c o m p l i s h the FCV c l u s t e r i n g b e i n g e v a l u a t e d . I t has 
been s u g g e s t e d , however, t h a t a f u r t h e r q u a l i t a t i v e 
i n d i c a t i o n o f c l u s t e r q u a l i t y may be o b t a i n e d by 
c o m p a r i n g t h e v a l u e s o f t h e c l u s t e r d i s c r i m i n a n t 
obtained by r a i s i n g m to c o n s e c u t i v e l y higher powers. I f 
there i s l i t t l e change i n the v a l u e s , the c o n c l u s i o n i s 
t h a t "most" of the d a t a have s h a r e d membership v a l u e s 
c l o s e to e i t h e r zero or u n i t y , i . e . a c o n f i g u r a t i o n of 
r e l a t i v e l y good q u a l i t y . A marked i n c r e a s e i n the v a l u e s 
as m i n c r e a s e s would be taken as an i n d i c a t i o n that the 
s h a r i n g between c l a s s e s i s s u b s t a n t i a l and that i t has a 
n o t i c e a b l e e f f e c t on t h e c l a s s m o d e l s . Such a 
c o n f i g u r a t i o n would be c o n s i d e r e d of poor q u a l i t y and 
r e j e c ted. 

A p p l i c a t i o n of FCV C l u s t e r Ana 1 y s i s t o M o n i t o r i n g 
P o l y c y c l i c Aromatic Hydrocarbons 

NILU used the FCV c l u s t e r i n g method as one of two 
methods to c a r r y out t h e i r o b j e c t i v e s o f : 

( 1 ) S t u d y i n g the p o s s i b i l i t y o f i d e n t i f y i n g the 
main PAH e m i s s i o n s o u r c e s i n the S u n d s v a l l , Sweden, 
area ; and 
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( 2 ) A t t e m p t i n g t o q u a n t i f y the PAH c o n t r i b u t i o n s 
from the aluminum p l a n t . 

Table I. PAH Compounds S e l e c t e d f o r FCV C l u s t e r i n g 

V a r i a b l e d e s c r i p t i o n 

Biphenyl 
Acenaphthene 
Fluorene 
Phenanthrene 
Anthracene 
Fluoranthene 

Be Ρ 
BaP 
Coronene 

A l l of the compounds measured i n the m o n i t o r i n g 
program are l i s t e d i n the re p o r t by Thrane (JJ_)« Table I 
l i s t s the compounds which were s e l e c t e d as v a r i a b l e s f o r 
the c l u s t e r a n a l y s i s . Feature ( i . e . a t t r i b u t e ) s e l e c t i o n 
f o r the c l u s t e r a n a l y s i s was p a r t i a l l y based upon the 
r e s u l t s of a p r i n c i p a l component a n a l y s i s (Henry, 12). 
A d d i t i o n a l f e a t u r e s were i n c l u d e d i f (1) the compound 
occurred i n r e l a t i v e l y l a r g e c o n c e n t r a t i o n s , or (2), i f 
a compound was known to have adverse h e a l t h e f f e c t . Wind 
d i r e c t i o n , wind speed, and temperature were recorded as 
ordered v a r i a b l e s . The chemical measurements were taken 
a t f i v e l o c a t i o n s . D e s c r i p t i o n s o f t h o s e s i t e s and o f 
the methods and techniques used to c o l l e c t the data are 
de s c r i b e d i n d e t a i l i n the re p o r t by Thrane. 

The methodology of the i n v e s t i g a t i o n was based on 
the assumptions t h a t : 

(1) The r a t i o of f l u o r i d e to t o t a l PAH measured at 
a s i t e , and wind d i r e c t i o n , c o u l d be used as good 
i n d i c a t o r s f o r t h e p r e s e n c e o f a l u m i n u m i n d u s t r y 
emissions ; 

(2) Aluminum i n d u s t r y PAH c o n t r i b u t i o n s at a g i v e n 
s i t e c o u l d be estimated by the f o l l o w i n g procedure: 

(a) Using FCV c l u s t e r a n a l y s i s to i d e n t i f y c l u s t e r s 
whose c e n t e r s c o u l d be a s s o c i a t e d w i t h a l u m i n u m 
p l a n t emissions; 
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(b) M u l t i p l y i n g the membership v a l u e f o r each 
measurement v e c t o r i n t h e c l u s t e r s a s s o c i a t e d 
w i t h a l u m i n u m p l a n t e m i s s i o n s by t h e t o t a l PAH 
measurement of the v e c t o r ; 

(c) D i v i d i n g the sum of the weighted PAH estimates 
f o r t h e a l u m i n u m p l a n t c l u s t e r s by t h e t o t a l 
measured PAH c o n t r i b u t i o n at the s i t e . 

Because the FCV a l g o r i t h m s a r e b a s i c a l l y a non-
s t a t i s t i c a l a p p r o a c h t o c l u s t e r a n a l y s i s i t was not 
p o s s i b l e to a t t a c h estimates of m i s e l a s s i f i c a t i o n e r r o r 
f o r step 2a). S i m i l a r l y , the amount of data which c o u l d 
be c o l l e c t e d f o r the i n v e s t i g a t i o n was not c o n s i d e r e d 
s u f f i c i e n t f o r use i n d e f i n i n g confidence l e v e l s f o r the 
a b s o l u t e v a l u e s o f p l a n t e m i s s i o n s d e t e r m i n e d by s t e p 
2 b ) . T h e s e q u a l i f i c a t i o n
c o n s i d e r a t i o n whe
i n v e s t i g a t i o n . 

C o n t r i b u t i o n s were e s t i m a t e d a t f o u r d i f f e r e n t 
s t a t i o n s . For the f i r s t h a l f of the monitoring program, 
s a m p l i n g a t t h e s e s i t e s was c a r r i e d out a t each of the 
s i t e s over 12-hour ( day, and nig h t ) p e r i o d s . Because of 
t h e e x p e n s e , and a l s o b e c a u s e o f d i f f i c u l t i e s 
experienced t r y i n g to o b t a i n s u f f i c i e n t amounts of PAH 
f o r the a n a l y s i s d u r i n g the w i n t e r months, i t was 
d e c i d e d l a t e r i n the m o n i t o r i n g program t o change t o 
24-hour s a m p l i n g p e r i o d s . The 24-hour samples were 
c o l l e c t e d at times when there was l i t t l e l a n d - or sea-
breeze . 

The o r i g i n a l s t u d y by NILU i n c l u d e d the dat a from 
a l l t h r e e o f the d i f f e r e n t s a m p l i n g t i m e - p e r i o d s . The 
raw i n p u t d a t a f o r e a c h r u n c o r r e s p o n d i n g t o a 
p a r t i c u l a r t i m e - p e r i od at a p a r t i c u l a r one of the four 
s i t e s c o n s i s t e d of l e s s than f o r t y measurement v e c t o r s , 
w i t h a maximum of t w e l v e f e a t u r e s ( i f wind d i r e c t i o n 
were i n c l u d e d ) each. S u b j e c t i v e e v a l u a t i o n o f the 
q u a l i t y o f v a r i o u s c o n f i g u r a t i o n s was based on the 
r e l a t i v e e x t e n t o f membership s h a r i n g between c l u s t e r 
c l a s s e s , as measured by the membership v a l u e s u ^ , and 
l e d to f i v e c l u s t e r s b e i n g used f o r each s i t e i n the 
a n a l y s e s d e s c r i b e d above. The computer program, FOSE, 
used by NILU was an e a r l y i m p l e m e n t a t i o n o f the FCV 
a l g o r i t h m s . It i n c l u d e d o n l y one option f o r s c a l i n g the 
i n p u t d a t a ; by n o r m a l i z i n g the dat a s e t to r e f e r e n c e 
c o n c e n t r a t i o n s . H o w e v e r , n o r m a l i z i n g the i n p u t d a t a 
seemed to have l i t t l e e f f e c t upon the c l u s t e r i n g r e s u l t s 
obtained i n t h i s a p p l i c a t i o n . 
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T a b l e I I summarizes the e s t i m a t e s o b t a i n e d i n the 
NILU st u d y when u s i n g the methodology o u t l i n e d above. 
R e s u l t s f o r the Haga s i t e have been boxed i n f o r l a t e r 
c o m p a r i s o n w i t h r e s u l t s o b t a i n e d u s i n g the c l u s t e r 
v a l i d i t y d i s c r i m i n a n t . The lower v a l u e s f o r the 24h 
samples p r o b a b l y r e f l e c t s t h e i r b e i n g c o l l e c t e d when 
t h e r e was l i t t l e l a n d - or s e a - b r e e z e f o r t r a n s p o r t of 
the e m i s s i o n s from the s m e l t e r . Daytime sea b r e e z e s 
would tend t o t r a n s p o r t e m i s s i o n s toward and p a s t the 
Haga s i t e , w h ile the evening landbreezes would tend to 
t r a n s p o r t emissions back toward the Haga s i t e . 

T a b l e I I . NILU E s t i m a t e d C o n t r i b u t i o n s From Aluminum 
P l a n t E m i s s i o n s 

(FCV C l u s t e

Sample Estimate based on 
S t a t i o n type % membership i n 

Kubikenborg Day 83 1 ,2,3,5 

Night 86 1,3,4,5 

2 4h 75 1 ,2,4,5 

HAGA Day 87 1,2,3,5 

Night 84 1 ,2,4,5 

24h 72 2,3,4,5 

Kopmansgatan Day 46 1,4,5 

Night 54 1,2,5 

24h 50 1,3,4 

S i d s j o n Day 57 3,4,5 

Night 57 1,4,5 

24h 52 2,4,5 

For comparison purposes, Table I I I shows the r e s u l t s of 
a second, n o n - c l u s t e r i n g , method which was used by NILU 
to o b t a i n c o n t r i b u t i o n 
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T a b l e I I I . E s t i m a t e d BaP C o n t r i b u t i o n from Aluminum 
P l a n t a t F o u r S t a t i o n s ( η o n - c 1 u s t e r i η g ) 

S t a t i o n C o n t r i b u t i o n ^ 
of BaP(ng/m 3) 

% of measured BaP 
a v e r a g e c o n c e n t r a t i o n 

Kubikenborg 6.4 123 

Haga 4.0 98.8 

Kopmansgatan 2. 1 60.0 

S i d s j o n 1 . 38 68.25 

e s t i m a t e s a t the same s i t e s . T h i s a p p r o a c h was based 
upon the assumption
i n the atmosphere i
and t h a t the aluminum s m e l t e r was the o n l y s o u r c e of 
f l u o r i d e i n the S u n d s v a l l v i c i n i t y . The c o n t r i b u t i o n of 
BaP from the smelter at the d i f f e r e n t s t a t i o n s was then 
e s t i m a t e d f r o m t h e r a t i o o f t h e BaP and f l u o r i d e 
emissions and the c o n c e n t r a t i o n s of f l u o r i d e i n the a i r . 
I t s h o u l d be n o t e d t h a t t h e p a u c i t y o f e m i s s i o n 
measurements made th e s e e s t i m a t e s somewhat u n c e r t a i n . 
T h a t u n c e r t a i n t y i s e v i d e n c e d by t h e e s t i m a t e d 
c o n t r i b u t i o n a t the K u b i k i n b o r g s i t e , which i s 23% 
h i g h e r than the measured c o n c e n t r a t i o n s . Reasons were 
advanced by Thrane (JJ_) which may e x p l a i n t h e s e o v e r ­
estimates . 

5.2.îLi.LiÎ.H.t.l0_E5- At lbe_ H a_£ a S^t_e_j_ The l i l t d i t y 
D i s c r i m i n a n t 

As mentioned above, the NILU i n v e s t i g a t i o n was c a r r i e d 
out u s i n g the program FOSE, which d i d not i n c l u d e the 
c l u s t e r v a l i d i t y d i s c r i m i n a n t , or a c o n v e n i e n t o p t i o n 
f o r r e c u r s i v e s u b c 1 u s t e r i η g . In t h i s s e c t i o n , a 
comparison of r e s u l t s i s made between those obtained by 
the o r i g i n a l i n v e s t i g a t i o n u s i n g FOSE, and r e s u l t s 
o b t a i n e d u s i n g a new FCV c l u s t e r i n g program (see the 
Appendix of t h i s r e p o r t ) which does i n c l u d e t h e s e 
o p t i o n s . The Haga s t a t i o n was s e l e c t e d f o r t h e 
comparison study, s i n c e both of the methods used i n the 
o r i g i n a l i n v e s t i g a t i o n e s t i m a t e d a v e r y h i g h PAH 
c o n t r i b u t i o n at that s i t e from the aluminum sm e l t e r . The 
daytime 12-hour s amp 1 i n g - p e r i o d data was s e l e c t e d 
b e c a u s e o f t h e o b s e r v e d c o r r e l a t i o n between w i n d 
d i r e c t i o n and the presence of high amounts of PAH. Along 
the e a s t e r n coast of Sweden, the sea-breeze s t a r t s about 
9-11 a.m. The wind d i r e c t i o n a t the aluminum p l a n t i s 
w i t h i n t h e s e c t o r f r o m s o u t h t o e a s t . H i g h e s t 
c o n c e n t r a t i o n s of p o l l u t a n t s were found to occur a t a l l 
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f o u r s t a t i o n s when the wind was coming from that s e c t o r . 
The 12-hour daytime d a t a at the Haga s i t e c o n s i s t e d of 
twenty seven measurement v e c t o r s . 

The f i r s t s t e p of the a n a l y s i s was to use the FCV 
al g o r i t h m s to p a r t i t i o n the data i n t o c=2, c = 3, and c = 4 
c l a s s e s . The columns under the h e a d i n g f o r " o r i g i n a l 
d a t a " i n T a b l e IV show t h e r e s u l t i n g v a l i d i t y 
d i s c r i m i n a n t v a l u e s . High v a l u e s i n t h e s e columns 
i n d i c a t e r e l a t i v e l y good s e p a r a t i o n between the p a i r s of 
c l u s t e r s l i s t e d i n the column t o the l e f t . The c = 4 
r e s u l t f o r the o r i g i n a l data showed c l u s t e r 2 s p l i t i n t o 
two p a r t s , w h i l e c l u s t e r s 1 and 3 remained e s s e n t i a l l y 
unchanged. S i n c e the case p r o v i d e d l i t t l e a d d i t i o n a l 
i n f o r m a t i o n , i t was not i n c l u d e d i n the t a b l e . The 
l e v e l s of each of the e l e v e n chemical components 

Table IV. V a l i d i t y C o e f f i c i e n t R e s u l t s 

O r i g i n a l Data Su b c l u s t e r of C l u s t e r #2 

P a i r 2 
c l u s t e r s 

3 
c l u s t e r s 

2 
c l u s t e r s 

3 
c l u s t e r s 

1-2 9.75 94.99 3.41 24.26 

1-3 37.21 9.93 

2-3 49.39 4.48 

s e l e c t e d as f e a t u r e s f o r the measurement v e c t o r s a re 
l i s t e d i n the f i r s t column of T a b l e V. The c e n t e r o f 
the o r i g i n a l d a t a i s shown i n the f i r s t column, w i t h the 
l e v e l s d e f i n i n g the centers of the three main c l u s t e r s 
of T a b l e IV shown i n the next t h r e e columns. U s i n g the 
same as s u m p t i o n s as i n the NILU s t u d y , the f l u o r i d e 
l e v e l s p r e s e n t i n the c e n t e r s of c l u s t e r s 1 and 3, 
r e l a t i v e t o c l u s t e r 2, were u s e d t o s u g g e s t t h e 
a s s o c i a t i o n of those c l u s t e r s w i t h aluminum p l a n t 
emissions. This a s s o c i a t i o n was strengthed by o b s e r v i n g 
the a v e r a g e wind d i r e c t i o n to be from the SE quad r a n t 
(a l i s t i n g of wind d i r e c t i o n f o r each c o l l e c t e d sample 
can be found i n Thrane's r e p o r t ,11). 
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Table V· Weighted Centers of C l a s s P r i n c i p a l Component 
Models 

Three 
C l u s t e r s 

O r i g i n a l 
V a r i a b l e Data 1 2 3 

Biphenyl 10 .815 14 .294 1 1 . 343 7 .423 I 
Acenapth 45 .711 181 .628 20. 602 91 .758 , 
Fluorene 63 .278 287 .21 1 25. 76 129 .037 ι 
Phenanth 255 .859 328 .586 77. 579 556 .791 , 
Anthrace 19. 446 101 .213 4. 577 47 . 091 , 
Fluorarith 129 .372 681 .924 33. 573 299 .236 , 
Pyrene 79 . 172 406 757 21 . 152 184 .203 
BaA 13 .65 57 .692 2. 608 39 .235 
BeP 20 . 124 127 .031 3. 173 38 .964 
BaP 8 .17 47 .611 1 295 17 .441 1 

Coronene 2 .55

I Three Su b c l u s t e r s 
1 of C l u s t e r #2 

1 2 3 

Biphenyl 10 .663 1 1 .345 7 .043 
Acenapth 46 .731 1 1 .158 12 68 

. Fluorene 48 .314 15 .37 22 .8 

. Phenanth 160 .945 30 .176 87 .628 
Anthrace 10 868 1 .517 4 .363 
F l u o r a n t h 78 .305 1 1 .721 37 .383 

. Pyrene 45. 509 9 .852 20. 999 

. BaA 6 .56 0 .975 2, 513 
BeP 6, 936 1 .736 2, 543 

j BaP 2. 875 0 .967 0, 824 
1 Coronene 
l 

1 . 321 2 .071 0. 814 

Because c l u s t e r 2 s p l i t i n t o two p a r t s when the 
t o t a l data was c l u s t e r e d to c=4, and because i n s p e c t i o n 
o f t h e f i n a l m e m bership m a t r i x f o r t h e c a s e c=3 
i n d i c a t e d that t h i s c l u s t e r was not so w e l l - d e f i n e d as 
the o t h e r two, i t was more c l o s e l y examined u s i n g the 
r e c u r s i v e c l u s t e r i n g o p t i o n a v a i l a b l e i n the FCV 
computer program used f o r t h i s s t u d y (see the Appendix 
f o r a b r i e f d i s c u s s i o n of the programs FCVPC and FCVAX). 
In t h i s o p t i o n , a t h r e s h o l d i s chosen which d e t e r m i n e s 
t h o s e measurement w i t h " s u f f i c i e n t membership" i n a 
g i v e n c l u s t e r t o be r e - c l u s t e r e d i n t o a d d i t i o n a l 
s u b c l a s s e s . R e c u r s i v e c l u s t e r i n g t h u s p r o v i d e s a 
h i e r a r c h i c a l f l a v o r to t h i s otherwise p a r t i t i o n a l method. 
The r e s u l t s of sube 1 u s t e r i n g the second c l u s t e r are 
shown i n the r e m a i n i n g columns of T a b l e s IV and V. 
B e t t e r s e p a r a t i o n was obtained by s u b c l u s t e r i n g to c=3, 
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r a t h e r than c = 2. T h i s would i m p l y t h a t a d e f i n i t e 
improvement i n c l u s t e r q u a l i t y i s achieved by going to 
the case c = 3. Subc l u s t e r i n g the o r i g i n a l c l u s t e r 2 to 
c = 4 p r o v i d e d o n l y a refinement of the case c=3. Looking 
at the c e n t e r s of the s u b c l u s t e r s i n T a b l e V, i t a p p e a r s 
r e a s o n a b l e t o a s s o c i a t e t h e f i r s t c l a s s w i t h t h e 
a l u m i n u m s m e l t e r . T h i s c l a s s a l s o showed good 
c o r r e l a t i o n w i t h the e x p e c t e d SE wind d i r e c t i o n . The 
c e n t e r of s u b c l a s s 2 does not seem t o be a s s o c i a t e d w i t h 
aluminum pr o d u c t i o n , a r e s u l t f u r t h e r r e f l e c t e d by the 
c l a s s s e p a r a t i o n measured by the v a l i d i t y d i s c r i m i n a n t 
c o e f f i c i e n t f o r c l a s s e s 1 and 2. C l a s s 3 summed to the 
s m a l l e s t t o t a l PAH c o n t r i b u t i o n and was a l s o the l e a s t 
d i s t i n c t . The s e p a r a t i o n c o e f f i c i e n t f o r a l l t h r e e 
s u b c l a s s e s of the o r i g i n a l c l u s t e r 2 suggests that i t s 
c e n t e r shows more s i m i l a r i t y to the c l a s s which has 
l i t t l e c o n t r i b u t i o n from the sme l t e r . 

Conclusions 

The two i n v e s t i g a t i o n s of the S u n d s v a l l data which have 
been d i s c u s s e d i n t h i s paper were s e p a r a t e d by t i m e , 
d i s t a n c e , and methodology. The major d i f f e r e n c e was i n 
the a p p r o a c h used t o a s s e s s the q u a l i t y of competing 
c l u s t e r c o n f i g u r a t i o n s . In the case of the NILU s t u d y , 
i t was necessary to use a s u b j e c t i v e procedure, based on 
i n s p e c t i n g the f i n a l membership m a t r i x . A membership 
m a t r i x w i t h most e l e m e n t s near 0 and 1 was c o n s i d e r e d 
p r e f e r a b l e t o one whose e l e m e n t s i n d i c a t e d a g r e a t e r 
extent of membership sh a r i n g between c l u s t e r s . The more 
recent i n v e s t i g a t i o n r e l i e d upon a q u a n t i t a t i v e measure 
of c l u s t e r q u a l i t y , the c l u s t e r v a l i d i t y d i s c r i m i n a n t , 
which was presented i n t h i s r e p o r t . 

Use of the s u b j e c t i v e p r o c e d u r e may not be w h o l l y 
i n a p p r o p r i a t e f o r i n v e s t i g a t i o n s such as t h i s one, where 
the t o t a l number of measurement v e c t o r s i s r e l a t i v e l y 
s m a l l . T y p i c a l l y , the procedure r e q u i r e d comparison of 
the membership of 25-35 v e c t o r s i n 2-4 c l a s s e s f o r the 
NILU d a t a . For s t u d i e s where the data c o n s i s t s of many 
more measurement v e c t o r s , and may r e q u i r e i n v e s t i g a t i n g 
the e x i s t e n c e of a number of c l a s s e s i n the d a t a , such 
an a p p r o a c h may become i m p r a c t i c a l and the a c c u r a c y o f 
the r e s u l t s q u e s t i o n a b l e . T h i s s h o u l d not be the case 
f o r the v a l i d i t y d i s c r i m i n a n t , where the i n c r e a s e i n 
measurement v e c t o r s and data c l a s s e s r e s u l t s o n l y i n an 
inc r e a s e i n computation time. 

The b a s i c a g r e e m e n t a c h i e v e d u s i n g t h e two 
d i f f e r e n t approaches was considered an important r e s u l t 
i n that i t tended to v a l i d a t e the v a l i d i t y d i s c r i m i n a n t 
concept, and pro v i d e d i n c r e a s e d confidence i n i t s use on 
l a r g e r data sets f o r other i n v e s t i g a t i o n s . 
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The o n l y s e r i o u s d i s a g r e e m e n t between the two 
i n v e s t i g a t i o n s was i n t h e i n t e r p r e t a t i o n o f t h e 
s u b c l u s t e r 3. The same c l a s s was i d e n t i f i e d as c l u s t e r 2 
i n the r e p o r t by Thrane (1982), and was r e c o g n i z e d as 
be i n g one whose a s s o c i a t i o n was u n c l e a r . That r e p o r t 
chose to a s s o c i a t e the c l u s t e r with the aluminum p l a n t , 
w h i l e t h i s i n v e s t i g a t i o n used the v a l i d i t y d i s c r i m i n a n t 
measure to argue that i t should not. The r e s u l t i n g f i n a l 
estimate of aluminum p l a n t c o n t r i b u t i o n at the Haga s i t e 
was t h e r e f o r e s l i g h t l y l o w e r , a t 82 %, than the 87% of 
the o r i g i n a l i n v e s t i g a t i o n . 

It s hould be mentioned that the Haga data was a l s o 
c l u s t e r e d to l i n e a r and p l a n a r c l u s t e r shapes, but 
n e i t h e r c a s e p r o v i d e d p a r t i t i o n i n g s o f q u a l i t y 
comparable to the round c l u s t e r s r e p o r t e d i n t h i s paper. 
Both s u b j e c t i v e comparison of the "extent" of membership 
s h a r i n g , and the
q u a n t i t a t i v e v a l i d i t
a s s e s s q u a l i t y . F i n a l l y , o n l y the c e n t e r s i n f o r m a t i o n 
p r o v i d e d by the p r i n c i p a l component model f o r each c l a s s 
was used i n the o r i g i n a l NILU i n v e s t i g a t i o n . A d d i t i o n a l 
b e t w e e n - c l a s s and w i t h i n - c l a s s i n f o r m a t i o n c o u l d have 
been e x t r a c t e d from the i n f o r m a t i o n p r e s e n t e d by the 
p r i n c i p a l d i r e c t i o n s f o r each c l a s s , as w e l l as the 
s c a t t e r i n those d i r e c t i o n s p r o v i d e d by the e i g e n v a l u e s 
of the c l a s s weighted c o v a r i a n c e m a t r i c e s . 

Appendix: Programs FCVPC and FCVAX 

A p r o g r a m w h i c h i m p l e m e n t s t h e FCV a l g o r i t h m s i s 
a v a i l a b l e i n c o m p i l e d v e r s i o n s f o r the VAX 11/780 and 
f o r IBM PC and PC compati b l e s , with or without the 8087 
c o p r o c e s s o r . The P a s c a l s o u r c e code c a n be made 
a v a i l a b l e f o r c o m p i l a t i o n on o t h e r m a c h i n e s . The 
programs are f a i r l y g e n e r a l i n t h a t o p t i o n s can be 
s e l e c t e d from a menu which p e r m i t s (1) c o m p u t a t i o n o f 
the p r i n c i p a l component model f o r the o r i g i n a l data;(2) 
an FCV c l u s t e r i n g o f t h e d a t a ; ( 3 ) r e c u r s i v e FCV 
c l u s t e r i n g of the data;(4) weighted maximum l i k e l i h o o d 
c l a s s i f i c a t i o n o f new sample d a t a v e c t o r s ; (5) and 
a d a p t i v e w e i g h t e d maximum l i k e l i h o o d c l a s s i f i c a t i o n . 
U t i l i t y programs are i n c l u d e d f o r m a n i p u l a t i n g the input 
d a t a and c r e a t i n g t e s t d a t a s e t s . The programs a l s o 
permit comparison of FCV c l u s t e r i n g r e s u l t s with three 
s t a n d a r d h i e r a r c h i a l c l u s t e r i n g methods. The f i r s t 
author should be contacted f o r f u r t h e r i n f o r m a t i o n . 
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We have developed a data matrix of 90 variables 
calculated from molecular connectivity indices for 
19,972 chemicals in the Toxic Substance Control Act 
(TSCA) inventory of industrial chemicals. Principal 
component analysis of this matrix revealed eight 
principal components that explained > 93 % of the 
variation in these data. The first three principal 
components convey generalized information on 
chemical structure: size, degree of branching, and 
number of cycles. The other components contained 
more specific information on branching, bonding, 
cyclicness, valency, and combinations of these 
structural attributes. Here we explored the use of 
the connectivity indices and their calculated 
principal components for their potential in 
predicting biodegradation as measured by biochemical 
oxygen demand (BOD) and the octanol/water partition 
coefficient. This approach showed promise in the 
prediction of biodegradation, but was of limited use 
in the prediction of the partition coefficient. 
Because it is possible to calculate the connectivity 
indices at a nominal cost for nearly all chemicals, 
the approach will prove especially useful for the 
identification of chemicals with similar structures 
and for systematically exploring where data are 
lacking on biological endpoints for chemicals in 
TSCA. 

More than 50,000 chemicals are currently l i s t e d i n the Toxic 
Substance Control Act (TSCA) inventory, but physical-chemical 
properties are available for a r e l a t i v e l y small percentage and 
b i o l o g i c a l endpoints for even less. The costs associated with 
thoroughly testing a l l chemicals are prohibitive, so models are 
needed to (1) predict the environmental ef f e c t s of a new 
chemical, or (2) assess whether the chemical should be subject to 
a detailed testing regime (1). Although models are available to 
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assess the environmental effects for some groups of chemicals (2-
6), new compounds often cannot be categorized into one group or 
another. If i t i s unclear when a model can be applied to a new 
chemical, then the power of the model i s substantially reduced. 

To overcome this weakness, we are developing a quantitative 
structure-activity strategy that i s conceptually applicable to 
a l l chemicals. To be applicable, at least three c r i t e r i a are 
necessary. First, we must be able to calculate the descriptors 
or independent variables d i r e c t l y from the chemical structure 
and, presumably, at a reasonable cost. Second, the a b i l i t y to 
calculate the variables should be possible for any chemical. 
Finally, and most importantly, the variables must be related to a 
parameter of interest so that the variables can be used to 
predict or classify the activity or behavior of the chemical (1). 
One important area of research i s the development of new 
variables or descriptors that q u a n t i t a t i v e l y describe the 
structure of a chemical. The development of these indices has 
progressed into th
topology and a large
descriptors have been described (7-9). Our objective i s not 
concerned with the development of new d e s c r i p t o r s , but 
alternatively to explore the potential applications of a group of 
descriptors known as molecular connectivity indices (10). 

Molecular connectivity indices are desirable as potential 
explanatory variables because they can be calculated for a 
nominal cost (fractions of a second by computer) and they 
describe fundamental relationships about chemical structure. 
That i s , they describe how non-hydrogen atoms of a molecule are 
"connected". Here we are most concerned with the s t a t i s t i c a l 
properties of molecular connectivity indices for a large set of 
chemicals i n TSCA and the presentation of the results of 
multivariate analyses using these i n d i c e s as explanatory 
v a r i a b l e s to understand s e v e r a l p r o p e r t i e s important to 
environmental chemists. We w i l l focus on two properties for which 
we have a r e l a t i v e l y large data base: (1) biodégradation as 
measured by the percentage of th e o r e t i c a l 5-day biochemical 
oxygen demand (B0D)( 11), and (2) n-octanol/water p a r t i t i o n 
coefficient or hereafter termed log Ρ (12). 

Data Base 

The U.S. EPA Environmental Research Laboratory-Duluth with the 
help of t h e i r cooperators has developed a data matrix of 90 
variables calculated from molecular connectivity indices (10) for 
19,972 of the chemicals in TSCA. Molecular connectivity indices 
consist of four primary types (paths or the edges between atoms, 
clusters or branches, path/clusters, and cycles or rings) that 
are calculated from Oth to 9th order depending on the number of 
connections between atoms. Path terms can include as many orders 
as there are edges between atoms i n the molecule, the minimum 
order for a clus t e r or a cycle i s three, and the minimum for a 
path/cluster i s four. Therefore, using 0th to 9th order, the 
number of variables for one set of connectivity indices i s 30 
v a r i a b l e s . In our data base, we in c l u d e d three sets of 
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connectivity indices: simple indices i n which the molecule i s 
assumed to be a saturated hydrocarbon, bond-corrected indices 
that adjust for double and t r i p l e bonds between atoms, and 
valence-corrected indices that adjust for the heteroatoms in the 
molecule. 

The data base for biodégradation information consisted of 5-
day BOD tests that were screened from the l i t e r a t u r e using a 
systematic review procedure (13). A t o t a l of 340 chemicals was 
included in this analysis. In contrast, the data base for log Ρ 
values i s much larger because Leo and Weininger (14) have 
developed an additive model to estimate log Ρ for chemicals. 
Their model also gives an estimate for the confidence i n the 
estimated value of log P. Here we used a data base of 1700 
chemicals that were determined by Leo and Weininger (14) to have 
a high confidence in the estimated value of log P. 

Stat i s t i c a l Analysis 

We focused on four primar
s t a t i s t i c a l properties of the molecular connectivity indices, (2) 
evaluation of how the dimensionality (90 variables) of the 
molecular connectivity variables could be reduced (15-17), (3) 
prediction of high or low 5-day BOD using the molecular 
c o n n e c t i v i t y v a r i a b l e s as d i s c r i m i n a t o r s ( 18), and (4) 
estimation of log Ρ values using the molecular connectivity 
indices as explanatory variables (19-20). 

Evaluation of the s t a t i s t i c a l properties is a fundamental 
part of any s t a t i s t i c a l analysis and here we concentrated on the 
d i s t r i b u t i o n of each variable. To reduce the dimensionality of 
this data set we used p r i n c i p a l component analysis (PCA) to 
explore the covariance structure of these data and to reduce the 
variables to a more manageable number (PA1 method with no 
rotation, 21). 

Because a complete explanation of the procedure used to 
predict the r e l a t i v e degree of biodégradation of chemicals i s 
p r o h i b i t i v e (see 22), here we focus on the o v e r a l l r e s u l t s . 
B r i e f l y , our multivariate s t a t i s t i c a l analysis included (1) 
c a l c u l a t i n g the factor scores derived from six p r i n c i p a l 
components of a principal component analysis extracted from 45 of 
the molecular connectivity variables for the 19,972 chemicals of 
TSCA, (2) using these six p r i n c i p a l components to i d e n t i f y ten 
clusters i n the p r i n c i p a l component space with the K-means 
clustering algorithm of the Biomedical Computer Program (23), and 
(3) c a l c u l a t i n g the discriminant functions that best separated 
chemicals with high BOD values (theoretical BOD > 17%) from those 
with low BOD values ( t h e o r e t i c a l BOD < 13 %, there were no 
chemicals with BOD values between 13 and 17 %) using the 
molecular connectivity indices as discriminators (discriminant 
function analysis, 23). The BOD values were divided into high 
and low groups because we were most i n t e r e s t e d i n the 
identification of whether a chemical was degradable (high BOD) or 
persistent (low BOD). 

In comparison, log Ρ does not follow a dichotomous l o g i c 
s i m i l a r to the BOD values and, therefore, we treated log Ρ as a 
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continuous variable. For the predictions of log Ρ we explored 
several multiple r e g r e s s i o n models (21) and used e i t h e r 
p r i n c i p a l components or molecular connectivity indices as 
explanatory variables. With the principal components we explored 
the use of non-linear trends by including second and third order 
polynomials as explanatory variables. With the molecular 
connectivity indices we used two different variable modifications 
in the regression models: (1) logarithmic transformations, and 
(2) standardization by size whereby the logarithm of the number 
of atoms was subtracted from the logarithm of each variable. The 
regression analyses included using both forward and stepwise 
methods. We were primarily concerned with finding combinations 
of variables that best reduced the standard error of the estimate 
(square root of the mean square error) (21). 

Results 

S t a t i s t i c a l propertie
are so many variables involve
the mean and standard deviation of the o r i g i n a l and log-
transformed data for the simple molecular connectivity indices 
(Table I). The r e l a t i v e magnitude of the means and standard 
deviations for the bond-corrected and valence-corrected indices 
were very similar to those for the simple indices. There are two 
features of these variables that have an important bearing on 
their s t a t i s t i c a l distribution. First, each variable is skewed to 
the right because of the presence of a few large molecules 
relative to the bulk of the chemicals in the data base. Second, 
many of the variables have a r e l a t i v e l y large number of zero 
values. This i s e s p e c i a l l y pronounced i n the t h i r d and fourth 
order cycle terms because more than 98 % of the i n d u s t r i a l 
chemicals do not have this configuration. The log-transformations 
improve the d i s t r i b u t i o n s considerably i n terms of the r a t i o 
between the mean and standard deviation, but many of the 
variables do not approximate a normal distribution. Given these 
problems in the distribution of the data, we proceed with caution 
and consider subsequent analyses as exploratory. Furthermore, 
the shortcomings in the distribution of these data supports the 
use of PCA i n the data reduction as opposed to procedures of 
factor analysis. Because PCA i s used i n an exploratory manner 
and no specific hypothesis is being tested (24), the assumption 
of normality in these data can be relaxed. 

Data reduction. We used the log-transformed data in a l l analyses 
presented here. The PCA resulted in eight principal components 
with eigenvalues > 1 and they explained 93.5% of the variation in 
the o r i g i n a l data (Table II). The f i r s t three p r i n c i p a l 
components a l l convey generalized information on chemical 
structure: size (PC 1), degree of branchness (PC 2), and number 
of cycles (PC 3). PC 1 was p o s i t i v e l y correlated with a l l 90 
variables (_r > .32), except for the c y c l i c variables i n which £ 
was as low as .07 for the 3rd order c y c l i c variables. PC 2 was 
p o s i t i v e l y correlated (r_ > .26) with a l l c l uster variables, but 
negatively correlated with a l l path and cyclic variables. PC 3 
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T a b l e I . S t a t i s t i c a 1 p r o p e r t i e s o f O t h t o 9 t h o r d e r f o r p a t h , 
c l u s t e r , , p a t h / c l u s t e r , a n d c y c l e t y p e s o f s i m p l e c o n n e c t i v i t y 

i n d i c e s • 

O r i g i n a l L o g - t r a n s f o r m e d 1 

S t a n d a r d S t a n d a r d P e r c e n t a g e 
Term O r d e r Mean d e v i a t i o n Mean d e v i a t i o n o f z e r o e s 

P a t h 0 1 1 .24 
1 7.10 
2 6.34 3.51 .86 .21 0.4 
3 4.67 3.00 .74 .23 4.9 
4 3.45 2.51 .63 .25 10.1 
5 2.51 2.15 .52 .26 19.0 
6 1 .58 1 .56 .39 .25 33.3 
7 1 .00 1.19 .28 .23 38.5 
8 .61 .86 .20 .20 43.5 
9 .37 .63 .14 .17 50. 1 

C l u s t e r 3 1.23 1 .16 .32 .18 37.6 
4 .09 .21 .03 .07 80.2 
5 .36 .93 . 1 1 .14 51.1 
6 .09 .47 .02 .09 82.8 
7 .18 .89 .04 .12 66.5 
8 . 11 .83 .02 .10 89.5 
9 .13 .96 .02 . 1 1 81.2 

P a t h / 4 2.35 2.68 .47 .26 18.1 
c l u s t e r 5 3.23 3.86 .54 .32 18.2 

6 4.68 6.57 .61 .40 20.2 
7 5.43 8.74 .62 .45 22.8 
8 6.09 11.80 .60 .50 25.0 
9 6.50 15.09 .56 .54 29.3 

C y c l e 3 .01 .04 .00 .02 98.5 
4 .01 .05 .00 .02 9 8 . 1 
5 .02 .10 .01 .03 84.5 
6 .07 .19 .05 .06 36.2 
7 .12 .36 .08 .09 40.6 
8 .17 .59 . 11 .13 45.9 
9 .21 .88 .13 .17 48.2 

n a t u r a l l o g a r i t h m s 
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was positively correlated Cr > ·32) with a l l cyclic variables and 
negatively correlated with most of the other variables. The 
remaining p r i n c i p a l components explained patterns of variation 
among chemicals i n terms of gradients of cyclicness, bonding, 
branching, valency (e.g., number and positions of heteroatoms 
such as halogens and oxygen), and combinations of these 
structural attributes. 

The results of the principal component analysis describe the 
" i n t r i n s i c " dimensionality that i s measured about chemical 
structure by the molecular connectivity indices. Eight principal 
components explain 93.5 % of the v a r i a t i o n i n the 90 o r i g i n a l 
variables, but 23 p r i n c i p a l components are required to explain 
99.0 % of the v a r i a t i o n i n these data. The r e l a t i v e l y high 
percentage of explained v a r i a t i o n i n the f i r s t three p r i n c i p a l 
components (77.8 %) indicates that there are r e l a t i v e l y high 
correlations among the variables derived from the molecular 
connectivity indices and i t is obvious that size, branchness, and 
cyclicness are major structura
of data reduction, th
the dimensionality from 90 variables to 8 new variables that 
s t i l l explained 93.5 % of the v a r i a t i o n i n the data set. 
Furthermore, i f we can interpret the f i r s t three p r i n c i p a l 
components as a size axis (PC 1), an axis of branchness (PC 2), 
and an axis of cyclicness (PC 3), then we can envision the higher 
order components as conveying both subtle and p o t e n t i a l l y -
important structural information because they are s t a t i s t i c a l l y 
uncorrelated (r_ - 0.0) or "independent" of size, branchness, and 
cyclicness. 

Prediction of BOD value. In the ten clusters identified by the 
K-means clustering procedure, two clusters were represented by 
chemicals with only low BOD values and one cluster with nearly 
a l l (18 of 19 or 95 %) high BOD values (Table III). Therefore, 
no discrimination was attempted within these clusters. In the 
remaining clusters there were 202 high BOD chemicals and 97 low 
BOD chemicals. Of these, approximately 75 % (152 of 202) were 
co r r e c t l y c l a s s i f i e d into the high BOD class, while 73 % (71 of 
97) were correctly classified into the low BOD class. Using both 
the clustering and discrimination analyses, 77 % (170 of 220) and 
78 % (93 of 120) of the chemicals in the data base were correctly 
c l a s s i f i e d . Within each of the c l u s t e r s , between 2 and 4 
molecular c o n n e c t i v i t y i n d i c e s were used i n the f i n a l 
discriminant functions to separate the two classes of BOD. 
Within each cluster a d i f f e r e n t combination of variables were 
used as discriminators. Because of the exploratory nature of 
this analysis, we lowered the F-ratio i n c l u s i o n l e v e l to 1.0. 
In several of the clusters, the F-ratios for variables included 
in the discriminant functions were subsequently small(e.g., < 
4.0). 

Predictions of log Ρ with regression. As would be expected, the 
largest values of the explained v a r i a t i o n (r squared) and the 
smallest standard error of estimates found with the regression 
models were those that included a l l 90 variables. These models 
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included one with log-transformed variables and the other with 
both log-transformations and with each variable standardized by 
size (Table IV). In general, the standard errors of the 
estimates were large r e l a t i v e to the mean which indicates a 
relatively poor f i t for the models tested here. 

TABLE III. Summary of cluster analysis and discriminant function 
analysis of high (> 17 % of theoretical) and low (< 13 % of 
theoretical) biochemical oxygen demand (BOD) values for 340 

chemicals. 

Cluster analysis Discrimination analysis 

Number of chemicals % Correctly classified 

High 
Cluster BOD 

1 0 6 - -
2 0 16 - -3 5 13 60 85 
4 13 9 85 78 
5 18 1 - -6 35 18 60 78 
7 10 12 80 83 
8 60 15 83 53 
9 29 14 72 64 
10 50 16 76 75 

Total 220 120 77 78 

Table IV. Summary of multiple regression analyses for the 
prediction of log Ρ from molecular connectivity indices (sample 

size - 1700). 

Variable Over- R2 Standard 
Regression a l l Variables Error of 

Number Modification Method F 10 A l l Estimate 

90 logarithm stepwise 34.8 7*54 762 1.26 
90 logarithm forward 30.2 .41 .62 1.26 
90 logarithm+ stepwise 35.3 .54 .62 1.26 

size 
90 logarithm* forward 30.1 .27 .62 1.26 

size 
24 polynomials- stepwise 32.1 .24 .31 1.66 

third degree 
8 principal stepwise 64.0 .23 1.75 

component 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



156 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

Discussion 

Of the two exploratory analyses that we presented, one showed 
relatively promising results for the general c l a s s i f i c a t i o n of 
high or low BOD values while the other with log Ρ provided 
unsatisfactory results. Among the advantages of the s t a t i s t i c a l 
procedures we used i n the BOD model may have been the eff e c t of 
reducing the dimensionality (PCA) and the complexity of the 
problem by cl u s t e r i n g the chemicals into smaller groups. In 
contrast, for the regression analyses with log P, we attempted to 
deal with the problem on a global scale whereby a l l chemicals 
were included i n one large analysis. Suckling et a l . (25) have 
noted this dilemma by pointing out that complex problems are 
d i f f i c u l t to solve i n one piece and need to be broken down into 
components, e s p e c i a l l y for the purposes of modelling. In the 
analytical procedures of the BOD model we used this process: (1) 
reduced the dimensionality of the data, (2) clustered the 
chemicals according t
attempted to analyze th
cluster or group of s i m i l a r chemicals. A further advantage of 
this procedure is that chemicals can be assigned independently to 
a cluster without prior biases regarding where i t " f i t s " within 
the realm of exi s t i n g chemicals. This is especially important 
from the perspective of environmental regulation of a new 
chemical. A newly designed chemical by virtue of being new does 
not necessarily f i t into one group of chemicals or another. 

P r i n c i p a l components. One of the potential powers of the 
p r i n c i p a l components i s that they are calculated from a large 
data base representing many chemical configurations and they are 
independent axes (intercorrelation jr = 0.0)(24). Therefore, they 
are well-suited for building prediction models with multivariate 
methods such as regression where a desirable property among the 
explanatory variables i s minimal multicollinearity (26). However, 
in these analyses, principal components and polynomial regression 
of the p r i n c i p a l components were relatively poor predictors of 
log Ρ and neither appear to be useful in this application. This 
i s a contrast with the result s presented by Murray et a l . (19) 
who found a high c o r r e l a t i o n between log Ρ and a form of the 
valence-corrected molecular connectivity index. Murray et a l . 
(19) l i m i t e d t h e i r c o r r e l a t i o n analysis to d i s t i n c t chemical 
groups such as esters and alcohols. Our analysis included a l l 
the chemicals available in a global model. 

Although the i n c l u s i o n of a l l 90 variables produced a 
relatively high jr and the lowest standard error of estimate, we 
suspect that there are many spurious correlations involved in the 
prediction equation (27). It i s slightly more encouraging that 
the f i r s t ten variables included i n the stepwise regression 
models of the 90 variable log-transformed and 90 variable log-and 
size-transformed data sets produced r 2 values of .54. The 
standard error of the estimates of log Ρ with the regression 
equations is substantially higher than the estimates obtained by 
Leo and Weininger (14) in their model. 
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Exploratory data analysis and data feedback. There are a large 
number of variables that can be calculated from a chemical 
structure, yet when the number of variables becomes large 
relative to the sample size then spurious or t r i v i a l correlations 
increase (27). For example, we believe the multiple regression 
analyses of log Ρ with 90 variables may represent such a 
sit u a t i o n . Likewise, the DFA used i n the BOD model examined a 
large number of variables relative to the sample size within some 
of the clusters (e.g., see cluster 3, Table III). In a c t u a l i t y , 
we used the DFA as an exploratory tool to fi n d p o t e n t i a l 
molecular configurations that were associated with high or low 
BOD values (22). This exploration led to the i d e n t i f i c a t i o n of 
several subgraphs of a molecule that may be associated with 
persistence or degradability of a chemical. The next step in the 
process would be to i d e n t i f y chemicals with these s p e c i f i c 
subgraphs and test them for their relative degradability. 

We believe that two of the main limitations for progress in 
applications of multivariat
at the current tim
(hundreds or thousands of chemicals) that has been col l e c t e d 
systematically for endpoints of environmental concern (e.g., 
biodégradation, toxicity, and carcinogenicity), and (2) the lack 
of a feedback mechanism whereby new chemicals or chemicals with 
specific molecular configurations are being retested for specific 
b i o l o g i c a l endpoints. Regarding the former, we recognize that 
there are many l i m i t a t i o n s i n the BOD data base (e.g., 28); 
however, there are no alternative data bases with a sample size 
i n the hundreds that can be used i n attempts to model the 
important environmental process of biodégradation. 

Future directions 

We are pursuing analyses with a variety of additional endpoints, 
but i t i s alre a d y c l e a r that c o n n e c t i v i t y i n d i c e s and 
multivariate techniques w i l l be useful in some applications and 
li m i t e d i n others. A powerful p r a c t i c a l a p p l i c a t i o n of thi s 
approach i s that many variables can now be calculated for nearly 
a l l chemicals. Therefore, the "universe" of industrial chemicals 
i n TSCA can be defined i n multi-dimensional space. This space 
gives EPA a tool for the identification of (1) whether there i s a 
similarly-structured chemical to a new chemical that needs to be 
evaluated, or (2) where data on biological endpoints are lacking 
within this chemical space. The former concept of s i m i l a r l y -
structured or analogous chemicals having s i m i l a r b i o l o g i c a l 
a c t i v i t y i s at the heart of the s t r u c t u r e - a c t i v i t y perspective 
for predicting the environmental e f f e c t s of chemicals. The 
l a t t e r provides an e f f e c t i v e , o b j e c t i v e means f o r the 
identification of what chemicals need to be tested. Both tools 
w i l l be useful i n understanding the relationships between 
chemical structure and bi o l o g i c a l a c t i v i t y and i n applications 
for the assessment of the environmental effects of chemicals. One 
of the most important aspects, however, w i l l be to understand the 
capabilities of the approach and especially i t s limitations. 
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Kowalski (29) has c o r r e c t l y emphasized that "the 
measurements made by analytical chemists are associated with some 
degree of uncertainty," so " i t i s d i f f i c u l t to conceive of a more 
perfect marriage than a n a l y t i c a l chemistry and s t a t i s t i c s and 
applied mathematics." The marriage i s the study of chemometrics 
and we are l i k e l y "only at the threshold of r e a l i z i n g the 
importance of s t a t i s t i c a l and mathematical techniques" (30) in 
applications of chemical measurements. Multitudes of data are 
currently capable of being generated by sophisticated analytical 
equipment. S i m i l a r l y , adaptable software and high-speed 
computers are able to handle these large data sets. The next 
decade promises to be the "decade when chemistry advances as a 
multivariate science (31)." 
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12 
Pattern Recognition of Fourier Transform IR Spectra 
of Organic Compounds 

Donald S. Frankel 
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 
Billerica, MA 01821 

Two pattern recognitio
analysis of the library of FTIR spectra compiled by the 
US EPA. The patterns which emerge demonstrate the 
influence of molecular structure on the spectra in a 
way familiar to chemical spectroscopists. They are 
also useful in evaluation of the library, which is not 
error free, and in assessing the difficulties to be 
expected when using FTIR spectra for complex mixture 
analysis. 

For testing the applicability of numerical pattern recognition to 
re a l i s t i c spectra, we chose to examine the increasingly relevant 
problem of complex mixtures occurring in the polluted environment. 
Several case studies have shown that chemical waste dump s o i l and 
effluents, airborne particulates, municipal wastewater, river 
sediments, etc. can often contain highly complex mixtures of organic 
compounds.(1-5) Particles from combustion sources are also expected 
to contain a broad variety of adsorbed species resulting from 
incomplete burning of the fuel, which is often i t s e l f a complex 
mixture.(6) Many excellent techniques have been developed for these 
problems, including infrared spectroscopy, gas chromatography, mass 
spectroscopy, high performance liquid chromatography, atomic 
absorption spectroscopy etc. 

However, problems with these techniques s t i l l exist. For 
example, gas chromatography seldom produces complete component 
separation when more than a few are present.(7) The problem of peak 
overlap is widely recognized and not simple to deal with. The same 
may be true of liquid chromatography. Traditional methods of 
analysis of particles involve extraction of the organic material i n a 
variety of solvents before analysis. It is d i f f i c u l t to defend these 
procedures i f they are challenged (loss of material or contamination 
during extraction, degradation of samples during storage, etc).(8) 
If mass spectroscopy is the chosen method for the analysis of the 
"resolved" components, one is faced with the d i f f i c u l t task of 
interpreting the data.(9) A l l of these techniques are d i f f i c u l t , 
time consuming and expensive. 

0097-6156/85/0292-0160$06.00/0 
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To improve this situation, we have sought a simple, nonintrusive 
way to analyze mixtures. We chose Fourier Transform Infrared (FTIR) 
Spectroscopy because the data are highly molecule specific and the 
instruments are relatively simple to operate, disturb the sample very 
l i t t l e and obtain digitized data quickly. If the identities of the 
components of a complex mixture are known, FTIR spectroscopy can be 
used to analyze the mixture quantitatively. To analyze mixtures 
whose components are unknown, we have adopted the alternative 
approach of analyzing by chemical class. Infrared spectroscopists 
have for several decades made use of the characteristic absorption 
bands of functional groups to identify or classify unknowns.(10) In 
this way, we hoped to identify and quantify the classes of organic 
compounds in the spectrum of a mixture, rather than the specific 
compounds. However, even this simplification would be virtually 
impossible to implement were i t not for the existence of high speed 
di g i t a l computers and a set of s t a t i s t i c a l techniques known 
collectively as pattern recognition  This paper describes the f i r s t 
necessary steps toward ou
using pattern recognitio
compound spectra to see i f they form distinct classes. 

Pattern Recognition Background 

Pattern recognition has received an increasing amount of well 
deserved attention from chemists in recent years. Several excellent 
review articles on chemical applications(11-13) and a number of 
general texts have been published.(14-17) 

There are two necessary and related preconditions which must be 
satisfied for complex mixture analysis by pattern recognition to be 
successful. F i r s t , we must obtain an adequate data base of FTIR 
spectra from which we can derive the spectral patterns we need to 
recognize. Second, we must demonstrate that there is a suitable 
measure or metric of similarity between the spectra. It is these two 
conditions which were evaluated by the work presented here. Pattern 
recognition techniques were most suitable for the evaluation. 

Pattern recognition techniques generally f a l l into two broad 
categories, supervised and unsupervised. Unsupervised techniques 
make no assumptions about the number of classes present in the data 
set nor their relationship to one another. Rather, this information 
is the hoped for result. In supervised learning, the number of 
classes has already been determined, and a group of items whose class 
assignment is known, called the "training set", is used to develop a 
computational decision rule for assigning unknowns. 

The two pattern recognition techniques used in this work are 
among those usually used for unsupervised learning. The results w i l l 
be examined for the clusters which arise from the analysis of the 
data. On the other hand, the number of classes and a rule for 
assigning compounds to each had already been determined by the 
requirements of the mixture analysis problem. One might suppose that 
a supervised approach would be more suitable. In our case, this is 
not so because our aim is not to develop a c l a s s i f i e r . Instead, we 
wish to examine the data base of FTIR spectra and the metric to see 
i f they are adequate to help solve a more d i f f i c u l t problem, that of 
analyzing complex mixtures by class. 
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Experimental 

Classes, Data Base and Metric. The definition of a chemical class in 
this work was predetermined by the type of result which was required 
and was in keeping with that of other pattern recognition work. A 
substance was assigned to a class based on i t s carbon skeleton and 
functional groups. The hierarchy alkane < alkene < arene was 
established such that a substance was assigned according to the 
highest ranking skeletal unit i t contained. Each distinct functional 
group established a separate class, as did combinations of groups, 
but multiple occurrence of the same group did not. Thus the alkyl 
mono and polyalcohols were in one class, the mono and polychlorinated 
alkanes were another class, and the alkanes with chloro and hydroxyl 
substituents were in a third class. 

Our library was compiled by the U.S. Environmental Protection 
Agency and consists of 2300 FTIR spectra covering the 450-4000 cm"1 

range at 4 cm"1 resolution.(18) In the calculations presented here
the resolution was reduce

Each spectrum is regarde
The coordinates of each point are the absorbance values at each 
wavenumber interval. Several metrics are widely used.(19) The f i r s t 
is the Ν dimensional cartesian distance between points i and j , 

d i j - 4 <xik - v 2 ) 1 / 2 (i> 
where x-j^ is the absorbance of compound i at wavenumber k. Since 
closely related points produce a small distance, d^j is often 
converted to a similarity measure d*j according to 

In the second metric, the one used in this work, attention i s 
focussed on the vector from the origin to each Ν dimensional 
point.(20-22) The cosine of the angle between these vectors is given 
by their dot product, 

cos θ ± . = I x i k x j k (3) 

provided only that the vectors have been previously normalized to 
unit length. This metric is already a similarity measure, in that 
closely related spectra have this dot product near unity. Note also 
that unlike peak position similarity measures, which are required by 
some data bases,(23) this metric implicitly makes use of our 
library's information about relative peak position, width and 
intensity. Explicit l i s t s of the compounds used in the calculations 
described below may be obtained from the author on request. 

Technique 1; Clustering of the Metric Matrix. The f i r s t step i n 
evaluating the library was to separate i t into classes by explicitly 
scanning the printed l i s t of compounds. At this point i t became 
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clear that some classes were represented by very few examples and had 
to be dropped from further consideration. Unfortunately, among these 
were the polychlorinated biphenyls (PCBs), and polycyclic aromatic 
hydrocarbons (PAH). 

The further evaluation of the library and metric proceeds from 
the metric matrix. Its elements are the dot products of each 
spectrum with every other in i t s class. 

The f i r s t pattern recognition technique used was clustering of 
the metric matrix, which requires no matrix inversion. Clustering 
proceeds in the following way. The spectra producing the largest dot 
product are linked and are treated thereafter as a unit by averaging 
their matrix elements with the other spectra. The procedure is 
repeated unt i l a l l the spectra are linked.The results are displayed 
graphically as a dendrogram.(24) 

Technique 2: Eigenanalysis. It is well known that the structure of 
a data set can be uncovered by performing an eigenanalysis of i t s 
covariance matrix.(14) Thi
analysis. That i s , we arrang
Ν objects as a column vector and combine them to form an Μ χ Ν 
matrix, A. A matrix Β, resembling the covariance matrix of this 
data set, is an Μ χ M matrix AA* whose elements are given by 

The eigenvectors of this matrix are linear combinations of the 
measurements, and the eigenvalues are a direct measure of the 
fraction of total variance accounted for by the corresponding 
eigenvector. This analysis is the basis for the Karhunen-Loeve 
transformation, in which the data are projected onto the plane of the 
two eigenvectors with largest eigenvalue. This choice of axes 
displays more of the data variance than any other. 

Closely related to this procedure is a less widely used analysis 
based on the similarity matrix 

which is of dimension Ν χ Ν. The eigenvectors of this matrix yield 
the linear combinations of objects which best represent the variance 
of the entire data set.(26) Since each FTIR spectrum contains 
hundreds or thousands of data points, using the similarity matrix 
greatly reduces the size of the eigenvalue problem and gives results 
equivalent to the more customary Karhunen-Loeve projection. 

Results and Discussion 

Dendrograms. In many cases, only one class was considered i n a given 
clustering calculation. Several types of information were obtained 
in this way. Fi r s t , i t was verified that spectra of compounds in the 
same class do indeed resemble each other in the dot product sense. 
Second, blank or misclassifled spectra could be easily recognized and 
either discarded or reclassified, respectively. Thus, clustering 

(5) 
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calculations can be a useful means of prescreening large libraries, 
which are often not error free. 

The clustering calculations also provide other kinds of 
information about chemical classification of infrared spectra. These 
include the effect of single substituents, carbon skeleton and 
multiple substitution. These effects were noticeable even under the 
more d i f f i c u l t circumstance wherein two classes were clustered 
s imultaneously· 

The clustering algorithm was applied to the spectra of the 
polycyclic aromatic alcohols and chlorides as shown in Table I. 
These calculations are encouraging for two reasons. F i r s t , they show 
that the f i r s t three spectra (alcohols) cluster closely with each 
other, as do the last three (chlorides). Second, the two groups 
cluster less well with each other than they do internally. 

A similar clustering calculation was performed on the combined 
spectra of alkyl and aryl hydrocarbons. A schematic drawing of the 
dendrogram is shown in Figure 1. Eight branched, saturated 
hydrocarbons of C 5 to C
or more saturated side chain
cluster. These two groups cluster with each other showing the 
influence of the C 3 - C 5 chains on the spectra. A group of 7 
branched C 6-C 1 2 aliphatics form a third cluster. Another group of 
aromatics having only one side chain or two short ones form a fourth 
cluster. These four clusters taken together are well separated from 
the remainder of the spectra, having a dot product with them of 0.11. 

A group containing nearly 30 cyclic or long straight chain 
aliphatics cluster together. Generally speaking, this clustering 
reflects the decreasing relative abundance of methyl groups present 
in the molecules, going from C 5 - C Q branched alkanes to long 
straight chain or cyclic alkanes. 

The clustering of the remaining 20 spectra consists mainly of 
groups of two or three f a i r l y similar spectra which join the other 
groups at much lower levels of similarity. The spectra in this 
region are largely benzene rings substituted with methyl groups, but 
include biphenyl, two of i t s derivatives and benzene i t s e l f . This 
result indicates that methylated benzenes, benzene and biphenyl are 
special cases. Whether this is the result of symmetry, the lack of 
aliphatic carbon-carbon single bonds or something else cannot be said 
at this time. 

A similar calculation was performed for the aliphatic alcohols. 
Some subclustering could be seen in this case, but in general the 
aliphatic alcohols cluster at dot product levels around 0.90 or 
higher regardless of chain length and substitution pattern. 

The next calculation attempts what has always been considered 
the most d i f f i c u l t problem that w i l l be encountered in a mixture, 
namely, distinguishing singly and multiply substituted spectra. For 
this calculation, we have chosen the aromatic alcohols, chlorides and 
chlorinated alcohols. 

The spectra separate into two large well separated groups. In 
the f i r s t , smaller clusters can be recognized: ortho diols, 
para-alkyl phenols, meta-alkyl phenols, ortho-chloro phenols, and 
multiply chlorinated benzenes. In the second group, these 
subclusters can be found: ortho-alkyl phenols, benzenes bearing 
chlorine on alkyl side chains, and ortho-chlorotoluenes. 
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3 
Table 1 - Clustering of Chloro and Hydroxy Polycycl ic Aromatics 

0.8779b 

0.5008 

0.7059 

0.5949 

ι 1 1 1 1 τ ­
ο.52 0.59 0.66 0.72 0.79 0.86 

aThe order of spectra i s : 1,6 -naphthalenediol; l-naphthol; 
2-naphthol; 1-chloronaphthalene; 1-chloro, 2-methylnaphthalene; 
2-chloronaphthalene. 

bNumbers i n this column ref lect the degree to which the spectra or 
groups of spectra are s imilar to the others. For example, the 
number 0.8779 means that spectra 1 and 2 are s imilar at the level 
0.8779. The number 0.7385 means that 1 and 2 together are s imilar 
to 3 at a level of 0.7385. Numbers 1, 2, and 3 together are 
s imi lar to 4, 5, and 6 together at a level of 0.5008. The pattern 
suggests two groups of three spectra. 
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C - _ R l - 3 
R i = C 4 , C 1 0 

R2 = C 3 » C3C3 > C2C4 
R 3 = C 3 

b r a n c h e d 

0.98 0.71 

0 -R1-3 
R} = C 3 , C 4 , C 2 

R2 = C2 C2 
R 3

 = ^2^f,£i^^mmm 0.94 0.72 

c y c l i c C 5 , C 6 , C 8 , C 1 2 

s t r a i g h t C g - C 2 6 

0.998 0.76 

0.68 

0.48 

0.11 

Figure 1. Schematic C l u s t e r i n g of A l k y l and A r y l Hydrocarbons. 
Numbers i n d i c a t e the range of l e v e l s at which c l u s t e r i n g occurs. 
Tne group at the bottom contains benzene, biphenyl and t h e i r 
methyl d e r i v a t i v e s . 
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The clustering seems to indicate that ring substitution patterns 
are recognized almost as easily as the substltuents themselves. That 
the clustering calculations display this information correlates with 
the determination of aromatic ring substitution patterns from 
infrared spectra practiced by chemists.(25) The results also 
indicate that i t may be best to consider the compounds with chlorines 
on alkyl side chains as a separate class. 

On the basis of these clustering results, the EPA library of 
FTIR spectra was judged adequate as a source of spectra to form the 
data base for the mixture analysis problem and the dot product was 
deemed an adequate similarity measure. Every chemical class 
considered to be a candidate for inclusion was subjected to the 
clustering algorithm. Only those classes exhibiting a high degree of 
internal similarity were retained in the mixture analysis data base. 

Eigenvector Plots. Our prejudice was that distinguishing classes 
with differing functional groups would be less d i f f i c u l t than 
distinguishing differen
latter as a more stringen

The f i r s t example is for the alkyl and aryl chloro alcohols. 
The plot using the f i r s t two eigenvectors is shown in Figure 2. As 
is generally true of this analysis, the f i r s t eigenvector of the 
similarity matrix is very nearly the average for a l l the objects and 
is not very useful for separating the classes. In this case however, 
the second axis is sufficient to show complete separation of the two 
classes. 

In the case of the alkyl and aryl hydrocarbons, where no 
functional groups are present, the separation problem is more 
d i f f i c u l t and the f i r s t and second eigenvectors do not yield 
separation. However, i t is necessary only to resort to the third 
eigenvector to achieve nearly complete separation, as shown in 
Figure 3. 

The alkyl and aryl chloro spectra are an even more d i f f i c u l t 
problem. The f i r s t two eigenvectors clearly separate one group of 
alkylchloro compounds but leave another group and the arylchloro 
compounds severely overlapped. Use of the third eigenvector, as 
shown in Figure 4, leaves the separated group intact and better 
separates the overlapped groups. Separation between these classes i s 
s t i l l far from complete and use of the fourth eigenvector does not 
improve i t . Examination of the plot shows that for these two 
classes, the well separated alkyls a l l contain four carbon atoms or 
more. Thus, an analysis of this type can be a guide for more 
effective c r i t e r i a of class membership. 

The f i n a l example involves the alkenyl hydrocarbons, a class 
whose distinguishing group absorptions are only subtly different from 
those of other hydrocarbons. Figure 5 shows the projection of 
alkenyl and aryl hydrocarbons onto the second and third 
eigenvectors. Better separation occurs in this case than could be 
obtained for the chloro compounds shown in Figure 4 using the third 
and fourth eigenvectors. Thus, i t may be expected that the alkenyl 

Overall, the results show that the dot product metric, when used 
with the US EPA data base of FTIR spectra, produces clusters of 
compounds which make sense chemically. The data base and metric 
should not therefore be impediments to the development of a pattern 
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83-284 

Α Δ Δ 

A A 

Δ 

LU 

Η Ξ 

a 

Ξ • 
0 . 0 0.1 

Figure 2. Alkyl Chloro Alcohols (•) and Aryl Chloro Alcohols 
(Δ). Group a: Δ6, 15, 18; group b: Δ4, 14, 16; group c: Δ12, 
17; group d: Δ10, 19. 
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Figure 3. A l k y l (•) and A r y l (Δ) Hydrocarbons. Group a: • 1-23, 
25-48; group b:D24, Δ24, 25; group c: Δ1, 3, 8, 11, 18; group 
d: Δ5, 6; group e: Δ17, 26, 27, 28; group f : Δ16, 21, 22. 
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•0.1 -0.0 a!i 

Figure 4. Alkyl Chloro (•) and Aryl Chloro (Δ) Compounds. 
Group a:D4, 11-14, 22-26, 30, 31, 34; group b: Π 6, 7; group 
c: Δ4, 6, 13; group d: Δ3, • 10; group e: D5, 40; group f: 
Δ5, 14; group g: D8, Δ10; group h:G21, 37; group i : Π39, Δ19; 
group j : D15, 18; group k: Π 16, 28; group 1: • 35, 38; group 
m:G17, 29. 
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0 

• 
0 Α Ξ 

S Θ 3 Ξ Ξ 
• 

Η Ξ A g] 

, j , Γ 

0.1 -0.0 0.1 

Figure 5. Aryl (•) and Alkenyl (Δ) Hydrocarbons. Group a: Δ29, 
30; group b: Δ18-20; group c: Δ32, 46; group d:D23, Δ3, 4, 13; 
group e: Δ27, 42; group f : Δ31, 38, 39; group g: Δ26, 37; group 
h: Δ17, 36; group i : Δ8, 9; group j : Δ23, 24, 33; group k: D l l , 
18; group 1: Δ6, 12; group m: D16, 21; group n: • 25, Δ10; 
group ο: Δ13, 48; group ρ: Δ7, 15, 47, 49; group q: Δ21, 35. 
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recognition technique for the class analysis of complex mixtures. 
Such a technique has in fact been developed. A f u l l description of 
i t w i l l appear in a future publication. 
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13 
Use of Composited Samples To Increase the Precision 
and Probability of Detection of Toxic Chemicals 

Gregory A. Mack1 and Philip E. Robinson2 

1Columbus Laboratories, Battelle, Columbus, OH 43201 
2Office of Toxic Substances, U.S. Environmental Protection Agency, 
Washington, DC 20460 

Compositing selected environmental samples before chemical 
analysis is a technique used to save analytical costs 
for estimating population average residue levels of toxic 
chemicals. In certain situations, compositing can provide 
greater tissue mass per analytical sample, and thus provide 
higher levels of analyte for detection of the presence 
of specified chemicals. A statistical based compositing 
design is presented for use in a national survey to 
identify toxic chemicals in human adipose tissue. The 
sampling design, compositing design, and statistical 
analysis methods are presented and discussed. 

The N a t i o n a l Human A d i p o s e T i s s u e S u r v e y (NHATS) (_1) i s one o f 
two m a i n o p e r a t i v e p r o g r a m s o f t h e N a t i o n a l Human M o n i t o r i n g P r o g r a m 
( N H M P ) . The NHMP i s an o n g o i n g c h e m i c a l m o n i t o r i n g n e t w o r k d e s i g n e d 
t o f u l f i l l t h e human and e n v i r o n m e n t a l m o n i t o r i n g manda te s o f b o t h 
t h e F e d e r a l I n s e c t i c i d e , F u n g i c i d e , and R o d e n t i c i d e A c t ( F I F R A ) 
as amended , and t h e T o x i c S u b s t a n c e s C o n t r o l A c t ( T S C A ) . 

The g e n e r a l p u r p o s e o f t h e N a t i o n a l Human A d i p o s e T i s s u e S u r v e y 
i s t h e d e t e c t i o n and q u a n t i f i c a t i o n o f t h e p r e v a l e n c e s o f s e l e c t e d 
t o x i c s u b s t a n c e s i n t h e g e n e r a l U . S . p o p u l a t i o n . The s p e c i f i c 
o b j e c t i v e s o f t h e s u r v e y a r e : 
1. To measu re a v e r a g e c o n c e n t r a t i o n s and p r e v a l e n c e s o f t o x i c 

s u b s t a n c e s i n t h e a d i p o s e t i s s u e o f t h e g e n e r a l U . S . p o p u l a t i o n ; 
2. To measu re t i m e t r e n d s o f t h e s e c o n c e n t r a t i o n s ; 
3. To a s s e s s t h e e f f e c t s o f r e g u l a t o r y a c t i o n s ; and 
4. To p r o v i d e b a s e l i n e d a t a . 

The d a t a n e e d e d t o meet t h e s e o b j e c t i v e s a r e g e n e r a t e d on 
a a n n u a l b a s i s b y c o l l e c t i n g and c h e m i c a l l y a n a l y z i n g a d i p o s e t i s s u e 
s p e c i m e n s f o r s e l e c t e d t o x i c s u b s t a n c e s , m a i n l y o r g a n o c h l o r i n e 
compounds and p o l y c h l o r i n a t e d b i p h e n y l s ( P C B s ) . The 20 compounds 
t h a t a r e c u r r e n t l y m o n i t o r e d i n t h e s t u d y a r e l i s t e d i n T a b l e I . 

0097-6156/85/0292-O174S06.00/0 
© 1985 American Chemical Society 
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T a b l e I . Compounds M o n i t o r e d i n t h e N a t i o n a l Human 
A d i p o s e T i s s u e S u r v e y 

-DDT 
-DDT 

j>,j>' -DDE 
-DDE 

£ , j>'-DDD 
-DDD 

a - B H C 

A l d r i n 
D i e l d r i n 
E n d r i n 
H e p t a c h l o r 
H e p t a c h l o r e p o x i d e 
PCB 
O x y c h l o r d a n e 
M i r e x ( D e c h l o r a n e ) 
t r a n s - N o n a c h l o r 
H e x a c h l o r o b e n z e n e 

β-BHC 
γ -BHC ( L i n d a n e ) 
6 -BHC 

The a d i p o s e t i s s u e s p e c i m e n s a r e o b t a i n e d f r o m a s a m p l i n g 
p o p u l a t i o n o f s u r g i c a l p a t i e n t
random sample o f s e l e c t e
and s e n d t o E P A / O T S a d i p o s e t i s s u e s p e c i m e n s o b t a i n e d on a c o n t i n u i n g 
b a s i s t h r o u g h o u t t h e f i s c a l y e a r . The p a t h o l o g i s t s and m e d i c a l 
e x a m i n e r s a l s o s u p p l y EPA w i t h a l i m i t e d amount o f d e m o g r a p h i c , 
o c c u p a t i o n a l , and m e d i c a l i n f o r m a t i o n f o r e a c h s p e c i m e n . T h i s 
i n f o r m a t i o n a l l o w s r e p o r t i n g o f r e s i d u e l e v e l s by s u b p o p u l a t i o n s 
o f i n t e r e s t , n a m e l y , s e x , r a c e , a g e , and g e o g r a p h i c r e g i o n s . 

E P A / O T S i s i n t e r e s t e d i n e n h a n c i n g i t s c a p a b i l i t i e s t o p r o v i d e 
more m e a n i n g f u l and c o m p r e h e n s i v e m e a s u r e s o f t h e c h a n g e s i n l e v e l s 
o f TSCA c h e m i c a l s i n man and t h e e n v i r o n m e n t . P a r t o f t h i s e f f o r t 
i n v o l v e s an enhancement t o t h e NHATS n e t w o r k t o i n c l u d e a d d i t i o n a l 
c h e m i c a l s b e y o n d t h o s e c u r r e n t l y m o n i t o r e d . An i n v e s t i g a t i o n i s 
b e i n g c o n d u c t e d t o i d e n t i f y o t h e r t o x i c s u b s t a n c e s i n s p e c i f i c 
c h e m i c a l c l a s s e s t h a t a r e p r e s e n t i n t h e p o p u l a t i o n a t d e t e c t a b l e 
l e v e l s . 

The i n v e s t i g a t i o n i n v o l v e s b r o a d s c a n c h e m i c a l a n a l y s e s ( B S A ) 
b e i n g p e r f o r m e d on t h e F i s c a l Y e a r 1982 c o l l e c t i o n o f a d i p o s e t i s s u e 
s p e c i m e n s . The c h e m i c a l a n a l y s e s a r e b e i n g p e r f o r m e d on c o m p o s i t e d 
s a m p l e s o f s p e c i m e n s t o i n c r e a s e t h e p r o b a b i l i t y o f d e t e c t i n g 
e x i s t i n g t o x i c compounds , and t o m i n i m i z e a n a l y s i s c o s t s f o r 
e s t i m a t i n g a v e r a g e r e s i d u e l e v e l s e x i s t i n g i n t h e p o p u l a t i o n . 
The s p e c i m e n s a r e c o m p o s i t e d a c c o r d i n g t o a s t a t i s t i c a l d e s i g n . 
T h i s p e r m i t s t h e p r o b a b i l i t y o f d e t e c t i n g e x i s t i n g t o x i c s u b s t a n c e s 
t o be c o n t r o l l e d , and p r o v i d e s f o r v a l i d c o m p a r i s o n s o f r e s i d u e 
l e v e l d i s t r i b u t i o n s among g e o g r a p h i c a l r e g i o n s and c e r t a i n 
d e m o g r a p h i c c a t e g o r i e s . 

The r e s u l t s o f t h e p r o g r a m w i l l be a r e d e s i g n o f t h e c u r r e n t 
m o n i t o r i n g p r o g r a m . The new p r o g r a m w i l l i n c l u d e a d d i t i o n a l t o x i c 
c h e m i c a l s i d e n t i f i e d d u r i n g t h e b r o a d s c a n a n a l y s e s , and w i l l l i k e l y 
i n c l u d e a d d i t i o n a l c o l l e c t i o n m e d i a b e y o n d a d i p o s e t i s s u e . The 
new m e d i a t o be added t o t h e p r o g r a m w i l l be t h o s e body componen t s 
w h i c h a r e t h e mos t e f f i c i e n t f o r d e t e c t i n g t h e a d d i t i o n a l c h e m i c a l s . 
One l i k e l y m e d i a c a n d i d a t e i s b l o o d . 

T h i s p a p e r a d d r e s s e s t h e s t a t i s t i c a l p r o b l e m s and i s s u e s 
i n v o l v e d i n t h e c o n s t r u c t i o n o f t h e c o m p o s i t i n g d e s i g n and t h e 
a p p r o a c h t o t h e s t a t i s t i c a l a n a l y s i s o f t h e c h e m i c a l a n a l y t i c a l 
r e s u l t s . 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 
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S a m p l i n g D e s i g n 

The a d i p o s e t i s s u e s p e c i m e n s a n a l y z e d i n t h i s w o r k were c o l l e c t e d 
u n d e r t h e NHATS p r o g r a m d u r i n g t h e 1982 f i s c a l y e a r . A s t a t i s t i c a l l y 
b a s e d s a m p l i n g d e s i g n was u s e d t o s e l e c t t h e s p e c i m e n s so t h a t 
a r e p r e s e n t a t i v e s a m p l e c o u l d be o b t a i n e d t o make s t a t i s t i c a l 
i n f e r e n c e s and e s t i m a t e s a m p l i n g e r r o r s . 

A c o m p o s i t i n g d e s i g n was d e v e l o p e d t o p r o v i d e f o r c o n t r o l 
o f t h e a n a l y t i c a l e r r o r s a s s o c i a t e d w i t h t h e b r o a d s c a n c h e m i c a l 
a n a l y s e s . The i n h e r e n t l i m i t a t i o n s o f t h e a n a l y t i c a l d e t e c t i o n 
t e c h n i q u e s a r e m i n i m i z e d b y i n c r e a s i n g t h e amount o f m a t e r i a l ( a n d 
h e n c e a n a l y t e ) a v a i l a b l e f o r a n a l y s i s . T o g e t h e r t h e s u r v e y and 
c o m p o s i t i n g d e s i g n s p r o v i d e f o r c o n t r o l o f t h e o v e r a l l e r r o r r a t e s 
a s s o c i a t e d w i t h t h e d e t e c t i o n o f t o x i c s u b s t a n c e s . The s a m p l i n g 
d e s i g n i s d e s c r i b e d i n t h i s s e c t i o n and t h e c o m p o s i t i n g d e s i g n 
i s d e s c r i b e d i n t h e n e x t s e c t i o n . 

S u r v e y D e s i g n . The t a r g e
t h e g e n e r a l U . S . p o p u l a t i o n
i t i s n o t p o s s i b l e t o d i r e c t l y s ample t h i s p o p u l a t i o n . The NHATS 
s u r v e y d e s i g n i s t h e r e f o r e b a s e d on a s a m p l e p o p u l a t i o n o f s u r g i c a l 
p a t i e n t s and a u t o p s i e d c a d a v e r s . T h i s l i m i t a t i o n r e q u i r e s t h e 
a s s u m p t i o n t h a t t h e p r e v a l e n c e s and l e v e l s o f t h e s u b s t a n c e s o f 
i n t e r e s t a r e t h e same i n b o t h p o p u l a t i o n s . 

Sample S e l e c t i o n . The s u r v e y d e s i g n i n v o l v e s a m u l t i s t a g e p r o c e s s 
t o s e l e c t a n a t i o n w i d e s a m p l e o f c o o p e r a t i n g p a t h o l o g i s t s . The 
48 c o n t e r m i n o u s s t a t e s a r e s t r a t i f i e d i n t o t h e n i n e C e n s u s D i v i s i o n s . 
W i t h i n e a c h C e n s u s D i v i s i o n , S t a n d a r d M e t r o p o l i t o n S t a t i s t i c a l 
A r e a s (SMSAs) a r e s e l e c t e d w i t h p r o b a b i l i t i e s p r o p o r t i o n a l t o t h e i r 
p o p u l a t i o n . The number o f SMSAs s e l e c t e d w i t h i n a Census D i v i s i o n 
i s d e t e r m i n e d by i t s r e l a t i v e p o p u l a t i o n w i t h r e s p e c t t o t h e g e n e r a l 
U . S . p o p u l a t i o n . W i t h i n e a c h SMSA a s e l e c t e d p a t h o l o g i s t o r m e d i c a l 
e x a m i n e r i s a s k e d t o s u p p l y t i s s u e s p e c i m e n s a c c o r d i n g t o a s p e c i f i e d 
q u o t a b a s e d o n t h e a g e , s e x , and r a c e c a t e g o r y o f t h e s p e c i m e n . 
The c a t e g o r i e s c o n s i d e r e d a r e : age ( 0 - 1 4 y e a r s , 1 5 - 4 4 y e a r s , 45 
y e a r s and o l d e r ) , s e x ( m a l e , f e m a l e ) , and r a c e ( w h i t e , n o n w h i t e ) . 
E a c h q u o t a i s b a s e d on t h e a g e , s e x , and r a c e d i s t r i b u t i o n s o f 
t h e a s s o c i a t e d C e n s u s D i v i s i o n . W i t h i n e a c h SMSA t h e s p e c i m e n s 
a r e s e l e c t e d i n a n o n p r o b a b i l i s t i c manner b a s e d on t h e j udgemen t 
o f t h e p r o f e s s i o n a l s i n v o l v e d . 

An o v e r v i e w o f t h e s a m p l i n g s t a g e s i s p r e s e n t e d i n F i g u r e 
1. The g e o g r a p h i c s t r a t i f i c a t i o n e n s u r e s a r e p r e s e n t a t i v e s a m p l e 
f r o m a l l r e g i o n s o f t h e c o u n t r y , and i m p r o v e s t h e a b i l i t y t o make 
r e g i o n a l and n a t i o n a l e s t i m a t e s o f p r e v a l e n c e s and l e v e l s o f t h e 
t o x i c s u b s t a n c e s . Q u o t a s s p e c i f i e d f o r e a c h a g e , s e x , and r a c e 
c a t e g o r y e n s u r e t h e p r o p e r r e p r e s e n t a t i o n f o r t h e s e d i f f e r e n t g r o u p s . 

Sample W e i g h t s . The t r u e p r o b a b i l i t y o f s e l e c t i o n f o r s p e c i m e n s 
c o l l e c t e d i n t h e NHATS n e t w o r k c a n n o t be c a l c u l a t e d s i n c e some 
s t a g e s o f t h e s a m p l e s e l e c t i o n i n v o l v e n o n p r o b a b i l i t y s a m p l i n g . 
F o r e x a m p l e , t h e s p e c i m e n s a r e s e l e c t e d by t h e p a t h o l o g i s t i n a 
n o n - s t a t i s t i c a l m a n n e r . I n a d d i t i o n , t h e s a m p l e i s n o t 
s e l f - w e i g h t i n g due t o d i s c r e p a n c i e s b e t w e e n a c t u a l s a m p l e s and 
d e s i g n q u o t a s . T h e r e f o r e , s a m p l e w e i g h t s a r e a s s i g n e d t o t h e 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 
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S t r a t i f y by 
G e o g r a p h i c a l 

R e g i o n 

S e l e c t P r o b a b i l i t y 
Sample o f SMSAs 

W i t h i n E a c h 
C e n s u s D i v i s i o n 

S e l e c t One o r 
M o r e H o s p i t a l s 
F r o m E a c h SMSA 

S e l e c t S p e c i m e n s 
A c c o r d i n g t o 
A g e , Sex and 
Race Q u o t a s 

N i n e C e n s u s D i v i s i o n s 

Two t o S e v e n SMSAs W i t h i n 
E a c h C e n s u s D i v i s i o n 

A p p r o x i m a t e l y 40 t o 50 
H o s p i t a l s i n T o t a l S u r v e y 

A p p r o x i m a t e l y 7 0 0 - 1 0 0 0 
S p e c i m e n s i n T o t a l S u r v e y 

F i g u r e 1. O v e r v i e w o f t h e Sample S e l e c t i o n P r o c e s s 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 
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specimens so that bias is minimized for estimates of regional and 
national averages. 

Since the SMSAs selected represent a valid probability sample, 
the weight assigned to each specimen is based on the selection 
protocol. Various adjustments are performed on the weights so 
that the sum of the sample weights for a given Census Division, 
age, sex, and race category equals the corresponding population 
count according to the U.S. Census. The weight assigned to an 
individual specimen therefore reflects the number of individuals 
in the general population represented by that specimen. 

Compositing Design 

The objectives for compositing tissue specimens before chemical 
analysis are: 
1. To increase the amount of sample material and analyte in the 

sample so that the probability of detection is increased; and 
2. To obtain a tissu

toxic residue leve
reduce chemical analysis costs required to achieve a specified 
precision of an estimate. 

The compositing design must address these two objectives. 
The number of individual specimens assigned to each composite 

is determined by: 
• The sensitivity of the analytical instrumentation; and 
• The magnitude of the population residue levels that are of 

interest to be detected. 
The details concerning how these factors determine the required 
number (N) of specimens per composite are described in the following 
sections. 

Sensitivity of the Analytical Instrumentation. Prior to the chemical 
analyses for each compound, a series of calibration tests are run 
to determine the relationship between instrument response and the 
true analyte level in a sample. The form of the calibration curve 
and the instrument response var i a b i l i t y about this curve determine 
the analytical sensitivity. Two quantities are calculated from 
the calibration data: 
• Limit of detection (LOD) - a threshold value unlikely to be 

exceeded by the instrument response when no analyte is present 
in the sample. 

• Minimum detectable analyte level (MDL) - the minimum analyte 
level required in a sample to obtain a high probability of 
detection. 

Responses that exceed the LOD are highly indicative of analyte 
being present in the sample. The presence of analyte in the sample 
is therefore declared to have been detected when such exceedances 
occur. 

The MDL represents an analyte level for which an exceedance 
is almost guaranteed to occur. One objective of the compositing 
design is to ensure that the analyte level per injection of an 
aliquot of the composited sample into the analytical instrument 
exceeds the MDL whenever the population of specimen residue levels 
exceeds stated levels of interest to be detected. 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 
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I n t h e B r o a d S c a n A n a l y s i s p r o g r a m , e v a l u a t i o n o f t h e 
s e n s i t i v i t y o f t h e a n a l y t i c a l p r o c e d u r e s i n d i c a t e d t h a t an a n a l y t e 
l e v e l o f 10 n g p e r i n j e c t i o n ( i . e . MDL = 10 n g ) was s u f f i c i e n t 
f o r d e t e c t i o n o f mos t compounds o f i n t e r e s t . 

P o p u l a t i o n R e s i d u e L e v e l s t o be D e t e c t e d . The number o f i n d i v i d u a l 
s p e c i m e n s r e q u i r e d p e r c o m p o s i t e was d e t e r m i n e d by t h e MDL v a l u e s 
f o r t h e d i f f e r e n t compounds a d d r e s s e d by t h e b r o a d s c a n a n a l y s e s . 
As i n d i c a t e d p r e v i o u s l y , a u n i v e r s a l MDL o f 10 n g was c o n s i d e r e d 
t o be a p p r o p r i a t e f o r t h e compounds o f i n t e r e s t . The number o f 
i n d i v i d u a l s p e c i m e n s p e r c o m p o s i t e was c h o s e n so t h a t t h e r e was 
a h i g h p r o b a b i l i t y t h a t an i n j e c t i o n d rawn f r o m t h e e x t r a c t o f 
t h e c o m p o s i t e d s ample c o n t a i n e d an a n a l y t e l e v e l e x c e e d i n g 10 ng 
f o r e a c h compound i n w h i c h t h e p o p u l a t i o n r e s i d u e l e v e l s e x c e e d 
t h e s t a t e d l e v e l s t h a t w e r e o f i n t e r e s t t o be d e t e c t e d . The 
p o p u l a t i o n r e s i d u e l e v e l s o f i n t e r e s t c o r r e s p o n d t o c o n c e n t r a t i o n s 
e x p e c t e d t o be t o x i c t o humans y e t a r e n o t c h o s e n t o be t o o s m a l l 
t o r e q u i r e a v e r y l a r g e numbe

S i n c e t h e p o p u l a t i o
r e p r e s e n t a d i s t r i b u t i o n o f v a l u e s , t h e s t a t e d c o n c e n t r a t i o n s t h a t 
a r e o f i n t e r e s t t o be d e t e c t e d c o r r e s p o n d t o a s p e c i f i c a t i o n o f 
v a r i o u s p a r a m e t e r s o f t h e p o p u l a t i o n d i s t r i b u t i o n . The 
c o n c e n t r a t i o n s a r e assumed t o f o l l o w a l o g - n o r m a l d i s t r i b u t i o n . 
A s p e c i f i c d i s t r i b u t i o n i n t h e l o g - n o r m a l (2^) f a m i l y i s d e t e r m i n e d 
by two p a r a m e t e r s , and t h u s two c h a r a c t e r i z a t i o n s were r e q u i r e d 
t o s p e c i f y t h e c o n c e n t r a t i o n s t o be d e t e c t e d by t h e b r o a d s c a n 
a n a l y s e s . These c h a r a c t e r i z a t i o n s i n v o l v e d p o p u l a t i o n a v e r a g e 
c o n c e n t r a t i o n s and s t a n d a r d d e v i a t i o n s . 

C a l c u l a t i o n o f N . The c o m p o s i t e d s a m p l e s a r e f o r med by c o m b i n i n g 
a s p e c i f i e d f i x e d mass o f t i s s u e ( e . g . , 1 gram) f r o m e a c h s p e c i m e n . 
The e n t i r e c o m p o s i t e d s a m p l e i s t h e n e x t r a c t e d down t o a p r e s p e c i f i e d 
f i n a l e x t r a c t v o l u m e . E a c h a n a l y t i c a l d e t e r m i n a t i o n i n v o l v e s an 
i n j e c t i o n o f a s m a l l amount o f t h e e x t r a c t i n t o t h e a n a l y t i c a l 
i n s t r u m e n t . 

L e t X d e n o t e t h e amount o f a n a l y t e i n a t i s s u e s a m p l e o f mass 
w grams t a k e n f r o m a r a n d o m l y s e l e c t e d s p e c i m e n i n t h e p o p u l a t i o n . 
The r e q u i r e d number o f s p e c i m e n s p e r c o m p o s i t e f o r a p a r t i c u l a r 
compound i s t h e minimum v a l u e o f Ν s a t i s f y i n g 

Ρ ( Χ χ + . . . + X N I k · MDL) I 0 . 9 9 ( 1 ) 

where k i s t h e r a t i o o f t h e f i n a l e x t r a c t v o l u m e t o t h e v o l u m e 
p e r i n j e c t i o n . F o r e x a m p l e , i f t h e f i n a l e x t r a c t v o l u m e i s 50 
]iL and t h e v o l u m e p e r i n j e c t i o n i s 2 y L , t h e n k i s 2 5 . 

The number o f s p e c i m e n s r e q u i r e d p e r c o m p o s i t e was t h e minimum 
v a l u e o f Ν s a t i s f y i n g E q u a t i o n 1 f o r a l l compounds a d d r e s s e d by 
t h e b r o a d s c a n a n a l y s e s . One c o n s t r a i n t on t h e v a l u e o f Ν was 
t h a t t h e t o t a l mass o f t h e c o m p o s i t e d s a m p l e c o u l d n o t e x c e e d s a m p l e 
p r e p a r a t i o n and e x t r a c t i o n c o n s t r a i n t s ( a p p r o x i m a t e l y 30 g r a m ) . 
To a c t u a l l y d e t e r m i n e t h e v a l u e o f Ν i t was n o t e d t h a t t h e v a l u e 
o f Ν s a t i s f y i n g E q u a t i o n 1 depends on t h e assumed d i s t r i b u t i o n 
o f p o p u l a t i o n r e s i d u e l e v e l s . V a r i o u s l o g n o r m a l d i s t r i b u t i o n s 
( i . e . v a l u e s o f t h e mean and s t a n d a r d d e v i a t i o n ) were t h e r e f o r e 
i n v e s t i g a t e d t o d e t e r m i n e how Ν v a r i e s w i t h t h e s e p a r a m e t e r s . 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 
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A n Ν v a l u e o f 20 was u l t i m a t e l y c h o s e n b e c a u s e i t s a t i s f i e d E q u a t i o n 
1 f o r t h e t y p e o f p o p u l a t i o n d i s t r i b u t i o n r e s i d u e l e v e l s o f i n t e r e s t 
i n t h e b r o a d s c a n a n a l y s i s . 

C o m p o s i t i n g Scheme. The manner i n w h i c h t h e s p e c i m e n s a r e c o m p o s i t e d 
i s d e t e r m i n e d by t h e s u b p o p u l a t i o n s t o be c o m p a r e d . G e o g r a p h i c a l 
c o m p a r i s o n s were t h e p r i m a r y i n t e r e s t among t h e s t r a t i f i c a t i o n 
v a r i a b l e s , w i t h a g e , s e x , and r a c e b e i n g s e c o n d a r y f a c t o r s o f 
i n t e r e s t . A n e v a l u a t i o n o f t h e 1982 s p e c i m e n s e t i n d i c a t e d t h a t 
t h e b e s t c o m p o s i t i n g scheme i n v o l v e d c o m p o s i t i n g s p e c i m e n s w i t h i n 
C e n s u s D i v i s i o n and age c a t e g o r y . Age was c h o s e n as an a d d i t i o n a l 
s t r a t i f i c a t i o n v a r i a b l e s i n c e age was c o n s i d e r e d t h e mos t l i k e l y 
o t h e r v a r i a b l e t o be s i g n i f i c a n t . F u r t h e r s t r a t i f i c a t i o n on s e x 
o r r a c e was n o t p o s s i b l e i n g e n e r a l , due t o t h e l i m i t e d number 
o f a v a i l a b l e s p e c i m e n s . W i t h i n a C e n s u s D i v i s i o n and age c a t e g o r y , 
c o m p o s i t e s were t h e r e f o r e f o rmed w i t h v a r y i n g p r o p o r t i o n s o f m a l e s 
and f e m a l e s , w h i t e s and n o n - w h i t e s . T h i s a l l o w e d t h e e f f e c t s o f 
r a c e and s e x t o be a s s e s s e
p r o p o r t i o n s . 

S t a t i s t i c a l A n a l y s i s 

One o f t h e o b j e c t i v e s o f t h e B r o a d S c a n p r o g r a m was t o make 
c o m p a r i s o n s o f r e s i d u e l e v e l d i s t r i b u t i o n s a c r o s s g e o g r a p h i c r e g i o n s 
a n d , i f p o s s i b l e , c e r t a i n d e m o g r a p h i c v a r i a b l e s . T h i s r e q u i r e d 
t h e s e l e c t i o n o f an a p p r o p r i a t e s t a t i s t i c a l m o d e l and a p p r o a c h 
t o t h e a n a l y s i s . (_3) 

The S t a t i s t i c a l M o d e l . The r e s i d u e l e v e l s o f t h e i n d i v i d u a l 
s p e c i m e n s i n a p a r t i c u l a r s u b p o p u l a t i o n ( e . g . , a g i v e n C e n s u s 
D i v i s i o n and a g e , s e x , r a c e c a t e g o r y ) a r e assumed t o f o l l o w a 
l o g n o r m a l d i s t r i b u t i o n . P r e v i o u s s t u d i e s on NHATS d a t a h a v e f o u n d 
t h e l o g n o r m a l d i s t r i b u t i o n t o be a p p r o p r i a t e and g o o d n e s s o f f i t 
t e s t s p e r f o r m e d on t h e c o l l e c t e d d a t a v e r i f i e d t h a t t h e a s s u m p t i o n 
i s s t i l l r e a s o n a b l e . The l o g n o r m a l m o d e l assumes o n l y n o n - n e g a t i v e 
v a l u e s and a l l o w s t h e v a r i a n c e s o f t h e d i f f e r e n t s u b p o p u l a t i o n 
d i s t r i b u t i o n s t o i n c r e a s e w i t h t h e mean l e v e l s . T h i s d i s t r i b u t i o n 
i s commonly u s e d t o m o d e l p o l l u t a n t l e v e l s i n t h e e n v i r o n m e n t . 

The m o d e l t h a t d e s c r i b e s t h e r e s i d u e l e v e l o f an i n d i v i d u a l 
(M gram) s p e c i m e n sample i s g i v e n by 

C i j h t k - Μ · μ · D 4 · A j ·• 1 0 β 1 R C l > · 1 0 B 2 S X t . S k ( i j h t ) ( 2 ) 

w h e r e 

μ r e p r e s e n t s t h e o v e r a l l p o p u l a t i o n a v e r a g e r e s i d u e l e v e l ; 
D^ r e p r e s e n t s t h e e f f e c t ( i . e . , t h e d e v i a t i o n f r o m μ ) due t o t h e 

i t h Census D i v i s i o n ; 
A j r e p r e s e n t s t h e e f f e c t due t o t h e j t h age c a t e g o r y ; S I , i f t h e s p e c i m e n i s W h i t e 

- 1 , i f n o n - W h i t e ; 

Î 1, i f t h e s p e c i m e n i s M a l e 

- 1 , i f F e m a l e ; 
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3χ and 32 a r e unknown c o e f f i c i e n t s t o be e s t i m a t e d f r o m t h e d a t a ; and 
£ > k ( i j h t ) r e p r e s e n t s t h e e f f e c t o f t h e k t h s p e c i m e n r a n d o m l y s e l e c t e d 

f r o m t h e g i v e n a g e , s e x , r a c e and C e n s u s D i v i s i o n c a t e g o r y . 

The e f f e c t due t o s p e c i m e n d i f f e r e n c e s i s assumed t o be a 
random v a r i a b l e h a v i n g a l o g n o r m a l d i s t r i b u t i o n . The a s s u m p t i o n 
o f a l o g n o r m a l d i s t r i b u t i o n i m p l i e s t h a t t h e l o g a r i t h m ( b a s e 10) 
o f t h e random v a r i a b l e h a s a n o r m a l d i s t r i b u t i o n w i t h some mean 
μ and v a r i a n c e σ 2 [ i . e . , l o g Χ *\» Ν ( μ , σ 2 ) ] . H e r e we assume t h a t 

! o g s k ( i j h t ) * N < ° > σ 2 ) 

whe re σ 2 d e n o t e s t h e v a r i a t i o n a s s o c i a t e d w i t h t h e d i f f e r e n t 
s p e c i m e n s w i t h i n a s u b p o p u l a t i o n . 

C o m p o s i t i n g i n v o l v e s t h e s u m m a t i o n ( o r e q u i v a l e n t l y , t h e 
a v e r a g i n g ) o f r e s i d u e l e v e l s o v e r a number o f d i f f e r e n t s p e c i m e n s . 
The s t a t i s t i c a l m o d e l f o r a c o m p o s i t e s a m p l e i s t h e r e f o r e o b t a i n e d 
by a v e r a g i n g , o v e r t h
g i v e n i n E q u a t i o n 2.
c o m p l i c a t e d and c a n n o t be d i r e c t l y a n a l y z e d by e x i s t i n g s t a t i s t i c a l 
t h e o r y . An a p p r o x i m a t e m o d e l was t h e r e f o r e u s e d . The a p p r o x i m a t e 
m o d e l assumes t h a t t h e e x p e r i m e n t a l e f f e c t s a r e a d d i t i v e on a 
l o g a r i t h m i c ( b a s e 10) s c a l e . F o r a c o m p o s i t e s a m p l e c o n s i s t i n g 
o f Ν s p e c i m e n s ( e a c h o f M g r a m s ) t h e m o d e l i s g i v e n b y : 

C · · 

f ( N n + N 1 2 ) - ( N 2 1 + Ν 2 2 Λ 
+ β 1 " V Ν / ( 3 ) 

+ 3 2 
( N U + N 2 i ) - ( N 1 2 

Ν 
+ N 2 2 ) ^ 

+ l o g S £ ( l j ) + l o g E £ ( l j ) 

whe re 

C j . j £ * s t b e r e s i d u e l e v e l f o r t h e £ t h c o m p o s i t e f r o m t h e i t h C e n s u s 
D i v i s i o n and j t h age g r o u p ; 

^ A ( i j ) *- s t n e u n l q u e e f f e c t due t o t h e s p e c i f i c s p e c i m e n s c o m p r i s i n g 
t h e c o m p o s i t e ; 

E J l ( i j ) r e p r e s e n t s t h e v a r i a t i o n due t o measurement e r r o r ; and 
N n t e q u a l s t h e number o f s p e c i m e n s i n t h e c o m p o s i t e h a v i n g r a c e 

h and s e x t , w i t h Ν = + N ^ 2 + Ν 2 χ + N 2 2 . 

The m u l t i p l i e r f o r t h e c o e f f i c i e n t 3χ i n E q u a t i o n 3 i s : 

P i = ( P r o p o r t i o n o f W h i t e s i n t h e c o m p o s i t e ) 
- ( P r o p o r t i o n o f n o n - W h i t e s i n t h e c o m p o s i t e ) . 

I f t h e c o m p o s i t e c o n s i s t s o f a l l w h i t e s p e c i m e n s , t h e n t h e r a c e 
e f f e c t i s 3ι· I f t h e c o m p o s i t e c o n s i s t s o f a l l n o n - w h i t e s p e c i m e n s , 
t h e n t h e r a c e e f f e c t i s ~ 3 i - T h u s , 3 i r e p r e s e n t s t h e e f f e c t due 
t o r a c e . S i m i l a r l y , 3 2 r e p r e s e n t s t h e s e x e f f e c t . 
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N o t e t h a t t h e m o d e l g i v e n i n E q u a t i o n 3 d e s c r i b e s a c o m p o s i t e 
s a m p l e where e a c h s p e c i m e n c o n t r i b u t e s M g r a m s . Due t o d i f f e r e n c e s 
i n t h e number o f a v a i l a b l e s p e c i m e n s f o r c e r t a i n c o m p o s i t e s , t h e 
v a l u e o f M was v a r i e d a c r o s s some c o m p o s i t e s . F o r t h o s e c o m p o s i t e s 
where t h e a v a i l a b l e number o f s p e c i m e n s , N , was s m a l l ( e . g . N=5), 
M was i n c r e a s e d a c c o r d i n g l y so t h a t Μ·Ν r e m a i n e d a p p r o x i m a t e l y 
c o n s t a n t . T h i s p r o d u c e d c o m p o s i t e s h a v i n g a p p r o x i m a t e l y t h e same 
amount o f mass and h e n c e t h e same e x p e c t e d a v e r a g e l e v e l o f a n a l y t e . 
H o w e v e r , t h e e s t i m a t i o n o f p a r a m e t e r s i n E q u a t i o n 3 now r e q u i r e d 
u s e o f w e i g h t e d r e g r e s s i o n s i n c e c o m p o s i t e s h a v i n g l a r g e r Ν v a l u e s 
h a v e s m a l l e r v a r i a n c e s and t h u s d e s e r v e d more w e i g h t i n t h e a n a l y s i s . 
N o t e t h a t t h e v a r i a b l e C ^ j ^ / M - N i n E q u a t i o n 3 r e p r e s e n t s t h e amount 
o f a n a l y t e on a " p e r g r a m " b a s i s . 

C o m p a r i s o n o f S u b p o p u l a t i o n s . The c o m p a r i s o n o f s u b p o p u l a t i o n s 
a r e done on two b a s e s : 
• The number o f s amp le c o m p o s i t e s i n a s u b p o p u l a t i o n e x h i b i t i n g 

t h e p r e s e n c e o r a b s e n c
• C o m p a r i s o n o f v a r i o u

o f t h e r e s i d u e l e v e l d i s t r i b u t i o n s a c r o s s t h e s u b p o p u l a t i o n s . 
C o m p a r i s o n o f t h e number o f c o m p o s i t e s i n d i c a t i n g t h e p r e s e n c e 
o f a t o x i c s u b s t a n c e i s n o t done i n a f o r m a l s t a t i s t i c a l m a n n e r . 
R a t h e r , t h e o b s e r v e d r e s u l t s o f t h e c h e m i c a l a n a l y s e s a r e s i m p l y 
r e p o r t e d . Summar ies a r e g i v e n f o r t h e d i f f e r e n t s u b p o p u l a t i o n s . 
The o b j e c t i v e o f t h i s k i n d o f a c o m p a r i s o n i s t o p r o v i d e q u a l i t a t i v e 
i n f o r m a t i o n c o n c e r n i n g w h e r e , i f a n y , h i g h r e s i d u e l e v e l s a r e 
a p p a r e n t . 

The f o r m a l s t a t i s t i c a l c o m p a r i s o n o f r e s i d u e d i s t r i b u t i o n s 
a c r o s s t h e v a r i o u s s u b p o p u l a t i o n s i n v o l v e s e s t i m a t i o n o f t h e 
p a r a m e t e r s i n t h e m o d e l g i v e n by E q u a t i o n 3. The m o d e l assumes 
t h a t e a c h s u b p o p u l a t i o n d i s t r i b u t i o n i s l o g n o r m a l b u t p o s s i b l y 
d i f f e r i n mean r e s i d u e l e v e l s and v a r i a n c e s . S i g n i f i c a n t d i f f e r e n c e s 
i n C e n s u s D i v i s i o n s c o r r e s p o n d t o s i g n i f i c a n t d i f f e r e n c e s i n t h e 
D^ v a l u e s . D i f f e r e n c e s i n t h e A j f s c o r r e s p o n d t o d i f f e r e n c e s among 
t h e age c a t e g o r i e s . The c o e f f i c i e n t s 31 and $2 p r o v i d e i n f o r m a t i o n 
c o n c e r n i n g r a c e and s e x d i f f e r e n c e s . 

The s t a t i s t i c a l m o d e l f i t t i n g i s p e r f o r m e d t o e s t i m a t e t h e 
p a r a m e t e r s o f t h e m o d e l . These e s t i m a t e s t h e n p r o v i d e i n f o r m a t i o n 
c o n c e r n i n g t h e i n f l u e n c e o f e a c h d e m o g r a p h i c and g e o g r a p h i c f a c t o r 
on c o n c e n t r a t i o n l e v e l o f t h e c o m p o s i t e . 

A s e c o n d a n a l y s i s u s i n g w e i g h t s b a s e d on p o p u l a t i o n c e n s u s 
f i g u r e s i s a l s o p e r f o r m e d so t h a t e s t i m a t e s c a n be made o f t h e 
mean r e s i d u e l e v e l s f o r t h e d i f f e r e n t s u b p o p u l a t i o n s . E a c h s p e c i m e n 
r e p r e s e n t s a p a r t i c u l a r number o f i n d i v i d u a l s i n t h e g e n e r a l 
p o p u l a t i o n and t h e s e v a l u e s s e r v e a s t h e s a m p l e w e i g h t s . 

Summary 

The u s e o f a s t a t i s t i c a l - b a s e d s a m p l i n g d e s i g n and c o m p o s i t i n g 
d e s i g n e n s u r e s t h a t t h e r e s u l t s and i n f e r e n c e s made f rom t h e b r o a d 
s c a n d a t a a r e d e f e n s i b l e . The s a m p l i n g d e s i g n p r o v i d e s f o r c o n t r o l 
o f t h e s a m p l i n g e r r o r s w h i c h a r e due t o t h e f a c t t h a t t h e s ample 
u p o n w h i c h i n f e r e n c e s a r e t o be made r e p r e s e n t s o n l y a s u b s e t o f 
t h e p o p u l a t i o n o f i n t e r e s t . The c o m p o s i t i n g d e s i g n p r o v i d e s f o r 
c o n t r o l o f t h e a n a l y t i c a l e r r o r s so t h a t t h e p r e c i s i o n and 
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s e n s i t i v i t y o f t h e measu remen t s a r e s u f f i c i e n t t o meet t h e s t u d y ' s 
o b j e c t i v e s . 

T h e r e a r e a number o f s t a t i s t i c a l a s s u m p t i o n r e q u i r e d i n 
d e v e l o p i n g s a m p l i n g and c o m p o s i t i n g d e s i g n s . The v a l i d i t y o f t h e s e 
a s s u m p t i o n s a r e somewhat s u b j e c t i v e . The s t a t i s t i c a l a p p r o a c h 
i s t h e r e f o r e i n t e n d e d t o p r o v i d e o n l y a g u i d e l i n e and f r amework 
f o r c o n d u c t i n g t h e s t u d y . The c o m p o s i t i n g scheme i n d i c a t e s a 
" b a l l p a r k " number o f s p e c i m e n s r e q u i r e d p e r c o m p o s i t e t o meet t h e 
s t u d y o b j e c t i v e s . The v a l u e o f Ν t h e r e f o r e r e p r e s e n t s a n o m i n a l 
number o f s p e c i m e n s p e r c o m p o s i t e t o d e t e c t t h e t y p e o f r e s i d u e 
l e v e l s d e s i r e d . 
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14 
The Alpha and Beta of Chemometrics 

George T. Flatman and James W. Mullins 

Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, 
Las Vegas, NV 89114 

Because of the importance of their decisions and the 
need for statistical justification of their results, 
monitoring statisticians and chemometricians are being 
asked by their customers to use hypothesis testing with 
its attention to false positives and false negatives. 
This paper explains the prerequisite assumptions, logic 
flow, and customary confidence values (alpha, beta) of 
classical random variable hypothesis testing. An algo­
rithm, equating the expectations of the loss values of 
a false positive and a false negative, calculates the 
ratio of alpha to beta given a site specific beta rather 
than the customary arbitrarily fixed value. Two real­
-world examples are given to illustrate the extreme 
variability of estimated beta values. The conclusion 
states the need for hypothesis testing in monitoring 
activities and the need for site specific alpha and beta 
algorithms in hypothesis testing. 

Chemometrics and monitoring stat i s t i c s often are used to make very 
exacting decisions with potentially costly and contested consequences. 
Conclusions are presented with s t a t i s t i c a l textbook vocabulary but 
not always with s t a t i s t i c a l r e l i a b i l i t y . A s t a t i s t i c a l l y significant 
difference may suggest the presence of pollution or suggest only the 
underestimated variance or skewness of the distribution of the test 
s t a t i s t i c . In hypothesis testing, this latter case is called a false 
positive and i t s probability is called alpha. The power of the test 
to detect clean as clean is one minus alpha. A sustained null hy­
pothesis may suggest no pollution or suggest only the sample size was 
too small. In hypothesis testing, this latter case is called a false 
negative and i t s probability i s called beta. The power of the test 
to detect polluted as polluted is one minus beta. Chemometrics, like 
monitoring s t a t i s t i c s , needs to use a l l of hypothesis testing. A l l 
include alpha, beta, power to detect clean as clean (1-alpha) and 
power to detect dirty as dirty (1-beta). 

This chapter not subject to U.S. copyright. 
Published 1985, American Chemical Society 
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Monitoring statistics starts with a random variable design to 
find and describe a toxic chemical site by a mean and a variance. 
If a large and intense plume is found, then geostatistics is used to 
find the structural pattern of the toxic substance in time and/or 
space. If a strong correlation structure exists, then monitoring 
statistics can draw a contour map of the toxic substance plume by 
means of spatial variable methods such as Kriging. As the environ­
mental scientists calculate means, variances, and contour maps, the 
risk assessors and health scientists need to know how good are these 
s t a t i s t i c s . They are asking what alpha (probability of calling clean 
"polluted"), what beta (probability of calling polluted "clean"), and 
what powers of the test (1-alpha, the probability of calling clean 
"clean" and 1-beta, the probability of calling polluted "polluted") 
do the site selection c r i t e r i a or clean-up c r i t e r i a have. In re­
sponse to these questions, monitoring stat i s t i c s and chemometrics 
must apply meaningfully the s t a t i s t i c a l abstractions "alpha," "beta," 
and "powers of the tests." These are well defined for random v a r i ­
ables. This presentatio
plaguing monitoring statistic
The U.S. EPA1s Environmental Monitoring Systems Laboratory-Las Vegas 
is extending "alpha," "beta," and "powers" to spatial s t a t i s t i c s . 
The task is complicated by the shifts from single inference to mul­
tiple inference and from random variable to spatial variable. 

The logic of the hypotheses testing was developed by R. A. 
Fisher for the needs of the agricultural experiment station. The 
logic is simple and obvious but should be worked out carefully step 
by step. In the rush of the workaday world, overworked scientists 
often f a i l to think through clearly the hypotheses which they are 
testing. This can lead to a powerless experiment that proves only 
that the number of samples taken was too small. 

Firs t the hypotheses must be chosen. There are two: (1) the 
null hypothesis denoted by H sub zero which is assumed true unt i l 
rejected, and (2) the alternative hypothesis denoted by H sub one or 
sub A for alternative which is assumed false u n t i l the null hypothe­
sis is rejected. The logic of the test requires that the hypotheses 
be "mutually exclusive" and "jointly exhaustive." "Mutually exclu­
sive" means that one and only one of the hypotheses can be true; 
"jointly exhaustive" means that one or the other of the hypotheses 
must be true. Both cannot be false. The null hypothesis is to re­
flect the status quo, which means that failure to reject i t is only 
continuation of a present loss. For the agricultural station, f a i l ­
ure to improve the status quo means that the old brand of seed, 
pesticide, or f e r t i l i z e r i s used when, in fact, a new and better 
brand is available. This is a status quo loss of productivity (e.g. 
10 percent lower yield), but one which the farmer unknowingly accepts. 
The loss from a customary alternative hypothesis might be 90 percent 
of the crop destroyed by disease or insects that the old strain was 
immune to, or a new f e r t i l i z e r or pesticide that is found to leave a 
carcinogenic residue exceeding an action level in 90 percent of the 
crop. Obviously, the status quo loss is smaller in the extreme case 
than the potential alternative loss. Management science statistics 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



186 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

often uses worst case expected losses in evaluating alternatives. 
If the decision maker can tolerate the worst case loss, then he can 
use that alternative. The expected value of the losses w i l l be very 
important in the discussion of beta. Will the loss from calling a 
polluted area clean be minimal among the losses associated with the 
tests of pollution hypotheses? 

For monitoring toxic substances, such as dioxln cleanup, assume 
we have calculated an χ and s for each unit area or rectangular panel 
potentially needing cleanup and have been given an action level_of 1 
ppb. The action level is a constant and has no variance. The χ and 
s are computed from a f i e l d t r i p l i c a t e of a composite of subsamples 
equally spaced from a uniform grid covering the panel. The null 
hypothesis says "no difference," and represents the status quo. 
Hopefully, nonpolluted or less than 1 ppb is the status quo, and pol­
luted or equal to or larger than 1 ppb is the exception. 

Let x^ be th

SJL be the standard deviation in ppb from panel i 

Null Hypothesis: This panel is clean 

Ho: X £ <1 ppb 

Alternative Hypothesis: This panel is polluted 

Ha: X i >. 1 ppb 

Let: TS be a test s t a t i s t i c which approximates a Student's 
t-distribution 

aft a b e t a b l e value of t-distribution for appropriate 
degrees of freedom (df), alpha (a), confidence level 
for a one t a i l test 

CV be the c r i t i c a l value of df f ca from the t-table. 

df = 3 - 1 or 2 

α = .05 

x± - 1 
TS = 

s i 

CV - dfta 
If (TS < CV), there is no reason to reject the null hypothesis 

and i f (TS >^CV), the null hypothesis is rejected, implying the 
alternative hypothesis is true. 
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In Figure 1 the decision space is represented by the bottom 
horizontal line which is divided by the vertical line representing 
the c r i t i c a l value (CV). The segment of the line less than CV repre­
sents the part of the decision space sustaining the null hypothesis. 
The segment of the line equal to or greater than CV represents the 
part of the decision space rejecting the null hypothesis and accept­
ing the alternative hypothesis. The upper horizontal line represents 
the real line and the value of the test s t a t i s t i c (TS). Again the 
line i s divided by the value of CV. The height or ordinate of the 
curve represents the probability that the test s t a t i s t i c (TS) takes 
on the value of abscissa. The bell shape of the curve shows that 
TS has a high probability of taking the abscissa values near the 
center of each distribution (Ho or Ha) and a low probability of 
taking the values in the t a i l s . The dashed shaded area represents 
the distribution of the TS under the null hypothesis, and the dotted 
shaded area represents the distribution of the TS under the alter­
native hypothesis. Classical statistics assumes identically dis­
tributed and equal variances
same shape with equal spread
means). Note the decision space (bottom line) is discrete but the 
"real world" data of the real line and shaded distributions overlap. 
This overlap gives rise to the possibility of error labeled in Figure 
1 as alpha, a dashed area right of CV, and beta, a dotted area l e f t 
of CV. Alpha and beta appear equal in Figure 1. Their relative 
size is the concern of this paper. Since the area (cumulative 
probability) of a probability distribution must add to one, the area 
of no error (correct decision) is represented by the dashed area 
below CV one-minus-alpha and the dotted area above CV one-minus-beta. 

Then: 

Alpha (a) is the probability of calling a clean panel 
polluted or the type I error and shown as dashed 
area to the right of CV in Figure 1. 

Beta (β) is the probability of calling a polluted panel 
clean or the type II error and shown as dotted 
area to the l e f t of CV in Figure 1. 

One-minus-alpha (1 - a) is the probability of calling a 
clean panel clean and shown as dashed area to 
the l e f t of CV in Figure 1. 

One minus beta (1 - β) is the probability of calling a 
polluted panel polluted, is called 
the power of the test, and is shown 
as dotted area to the right of CV in 
Figure 1. 

Now the conventional value for alpha is .05, giving .95 proba­
b i l i t y of calling a clean panel clean. The probability of beta (β) 
depends on the true value of the mean in the alternative distribution 
and on the testing assumptions of: (1) equal standard deviations and 
(2) identical frequency distributions. Since the difference between 
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F i g u r e 1· The lower l i n e r e p r e s e n t s the d i s c r e t e d e c i s i o n s p a c e , 
the upper l i n e r e p r e s e n t s the r e a l v a l u e s t h a t the t e s t s t a t i s t i c 
(TS) may t a k e , and the o v e r l a p p i n g shaded areas r e p r e s e n t the 
p r o b a b i l i t y t h a t the t e s t s t a t i s t i c t a k e s these r e a l v a l u e s under 
each h y p o t h e s i s . 
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the null and alternative hypotheses is the difference between the 
dispersion of no pollutant and the dispersion of a pollutant, i t 
seems reasonable that there would be a different standard deviation 
and frequency distribution, thus contradicting the assumptions of 
hypothesis testing; however, answering this problem is beyond the 
scope of this paper. Assuming equal alternative standard deviation 
and distribution, an acceptable beta (β) has been classically set in 
USDA's USFS Experiment Station work at .20 or less. However, this 
beta, four-times-larger than alpha, i s based on the assumption that 
type II error has lower loss value. What are the loss values of: 
(1) cleaning a panel that is already clean (type I) and (2) leaving 
dirty a panel that is in fact polluted (type II)? Management science 
statistics uses expected loss to make probabilistic losses comparable. 

E(LOSS) • probability of loss χ value of loss 

For type I: E(LOSS) = α χ value of loss from committing a type 

For type II: E(LOSS) • β χ value of loss from committing a type 
II error. 

With a fixed sample size, the magnitudes of α and β are inversely 
related; that i s , i f alpha decreases by moving the CV to the l e f t 
then beta increases, and i f alpha increases, then beta decreases. 

Increasing the sample size would reduce both alpha and beta, but 
samples and especially their analyses cost money. Intuitively the 
minimal actual loss should occur when the expected losses are equal. 
So the relative alpha and beta should be found from equating expected 
loss from type I error with the expected loss from type II error. 

Ε (type I loss) - Ε (type II loss) 

α χ (loss from type I error) - β χ (loss from type II error) 

β : α :: (loss from type I error):(loss from type II error) 

For example, in a s o i l cleanup, the loss from type I error or clean­
ing a clean panel might be the cost of scraping up six inches of s o i l 
within the panel, trucking the s o i l away, and disposing of the s o i l ; 
probably a cost measured in hundreds to thousands of dollars. The 
loss from a type II error or leaving a polluted panel would have a 
wide range of potential costs from nothing to the adverse human 
health effects. I suggest that r e a l i s t i c a l l y the health effects' 
cost is at least as high as the cost of the unneeded cleanup, or in 
the magnitude of hundreds to thousands of dollars. Mathematically 
this means: 

β : α :: (loss from type I error):(loss from type II error) 

β : α :: (cost of cleaning a panel):(cost of human's health) 
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β : α :: (hundreds of dollars):(hundreds of dollars) 

=̂ > β » α 

Note that i f beta equals alpha, beta i s one fourth of the tradition­
a l l y allowed type II error ( i . e . , .05 Instead of .20). This shows 
that the unthinking use of textbook examples or traditional confi­
dence levels can be dangerous to the environment and public health. 
Pollution monitoring statistics must have i t s own beta calculations. 

Next apply this analysis of the hypotheses testing logic to the 
proposed monitoring of a RCRA dump site using the Fisher-Behrens Test 
(another Student t-distribution). If a clean ground-water sample is 
diagnosed as polluted (type I error), the corrective action is resam­
pling and reanalysis which would cost a few hundred dollars, but 
diagnosing a polluted ground-water sample as clean (type II error) 
may allow a ground-water pollution plume to grow to a size that w i l l 
require a cleanup of thousand
Mathematically this means

β : α :: (loss from type I error):(loss from type II error) 

β : α :: (cost of resampling and analysis):(cost of 
ground-water cleanup) 

β : α :: (hundreds):(tens of thousands) 

β : α :: 1 : 100 

Note that in this case, beta should be one one-hundredth of alpha. 
Again the unthinking use of textbook examples or traditional confi­
dence levels can be dangerous to the environment and public health. 
Even the previously calculated beta for the s o i l cleanup example is 
two orders of magnitude too large. 

In conclusion, chemometrics, like monitoring s t a t i s t i c s , re­
quires an alpha and beta which differ from classical values. Espe­
c i a l l y beta must be calculated by s t a t i s t i c a l expectations for each 
application. Conventional values of beta or values of a previous 
pollution site may be incorrect by orders of magnitude for the cur­
rent s i t e . Statistics is not a tool that can be used by rote; thor­
ough understanding and site-specific thought is essential. The alpha 
and beta of monitoring stat i s t i c s is site-specific. If alpha is an 
acceptable type I error for the test, then one minus alpha i s an 
acceptable power for calling clean "clean," and i f beta is an accept­
able type II error for the test, then one minus beta is an acceptable 
power for calling polluted "polluted." A l l four values must be 
thought out. 

RECEIVED July 17, 1985 
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Asbestos abatement activity, especially removal pro­
jects in schools and other public buildings, is ex­
panding rapidly in response to EPA's recent "Asbestos 
in Schools" rule. A focal point for the many 
technical and scientific problems in EPA's asbestos 
program is the question of how to determine that a 
contractor has successfully completed an abatement 
project. The question engulfs the broad debate on 
biologically effective fibers, sampling strategies and 
analytical alternatives. For any post-abatement 
evaluation protocol that is proposed, there are 
important statistical design and analysis issues that 
must be addressed. The statistical objectives are to 
obtain precise and accurate estimates of airborne 
asbestos levels and to quantify and control the 
likelihood of a false positive or false negative test 
result. In this paper the statistical design issues 
are identified and the relationship between sample 
size, error rates and cost is analyzed. 

EPA has not set an exposure standard for asbestos. However, the 
"Friable Asbestos Containing Materials in Schools, Identification 
and Notification Rule" was promulgated to address the problem of 
exposure for young people whose risk is increased i f only because of 
their longer expected l i f e span relative to the latency period asso­
ciated with asbestos-related disease. The rule requires inspection 
and testing for asbestos, and notification of maintenance workers, 
teachers and parent groups i f asbestos is found. The rule does not 
require abatement. If asbestos is present, the choice of an 
approach and method, i f any, for reducing exposure is left to the 
local decision-making body. 

A building owner who decides on abatement is confronted with a 
variety of technical and scientific issues directly affecting the 
quality of the job to be undertaken. EPA guidance identifies these 
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issues and recommends that a program manager be designated to coor­
dinate the activities of contractors and consultants. One of the 
consultant's most important functions is to ascertain that the pro­
ject has been successfully completed and that the contractor can be 
released. 

EPA guidance on this question—often referred to as the "how 
clean is clean" issue—has been cautious. The Agency has been care­
ful not to recommend post-abatement evaluation techniques that have 
not been thoroughly validated. In Guidance for Controlling Asbestos 
Containing Materials in Buildings ( J j , EPA offers a recommendation 
to assess whether a contractor has effectively reduced the elevated 
airborne concentration levels generated while the work was in 
progress. A visual inspection is to be conducted to ascertain that 
a l l asbestos-containing materials have been removed and no debris or 
dust remains. Air sampling is also recommended. A slow, long 
sample (2 l i t e r s per minute for eight hours) should be taken within 
48 hours after the work has been completed. It is recommended that 
the samples be analyze
Although PCM is only sensitiv
fibers) and does not distinguish asbestos from other types of 
fibers, other analytical methods based on electron microscopy that 
may be definitive had not been sufficiently validated to receive a 
recommendation at the time the guidance document was prepared. 
Furthermore, PCM is satisfactory for its intended purpose, namely, 
to determine i f an asbestos worksite, the abatement area, has been 
restored to its normal condition. 

As a result of a recent EPA/NBS workshop on "Monitoring and 
Evaluation of Airborne Asbestos Levels Following an Abatement 
Program," many of the apparent conflicts among sampling and 
analytical methods were tempered. A variety of new proposals in­
volving both optical microscopy and electron microscopy appeared to 
be acceptable for post-abatement monitoring. The workshop did not 
explicitly address questions of uncertainty in the measurement pro­
cess, the likelihood of reaching a correct conclusion or implemen­
tation cost. We address these questions using TEM as an example. 
With slight modification the approach and solutions obtained are 
applicable to other sampling and analysis methods. 

Statistical Issues 

The objective in measuring post-abatement airborne asbestos concen­
trations is to confirm that the levels in the area of interest do 
not constitute a public health hazard. To date EPA has not promul­
gated a numerical exposure standard for airborne asbestos. In 
general, the scientific information regarding health effects related 
to exposure to asbestos at environmental levels is currently insuff­
icient to serve as a basis for standard setting. However, asbestos 
abatement projects are ongoing and the parties engaged in this work 
need cri t e r i a to determine when a contractor has f u l f i l l e d the 
requirements. In the absence of an absolute standard, one feasible 
approach to releasing a contractor is to base the decision on the 
comparison of two requirements. 

We propose a criterion based on a comparison between the post-
abatement indoor airborne asbestos level and the ambient (outdoor) 
level. An area is "clean" when there is no s t a t i s t i c a l l y 
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significant difference between the indoor and ambient levels. This 
approach is not currently under formal consideration for rulemaking. 

Once a criterion is accepted i t is possible to determine an 
optimal scheme for collecting the necessary data. There are two 
broad issues that must be addressed—air sampling protocols includ­
ing quality assurance, and st a t i s t i c a l sampling designs. Determin­
ing the best air sampling protocol involves decisions about the type 
of sampling to be used (e.g., whether or not to employ aggressive 
sampling which involves stirring up the a i r ) , flow rates, duration, 
frequency and type of f i l t e r . Some of these choices are tied to the 
type of analysis—PCM, SEM, or TEM—that is to be done. Other 
choices, for example, rate, duration, and frequency are sample size 
issues which depend on st a t i s t i c a l requirements such as false 
positive rate, false negative rate and sensitivity. Sensitivity in 
this context means the magnitude of difference between indoor and 
outdoor or pre and post levels that must be detected with a high 
probability. A sampling and analysis program should have sufficient 
sensitivity to detect th
ambient levels that is considere

Statistical Model. In designing an airborne asbestos sampling 
analysis procedure for determining i f an area is clean, the physical 
sampling parameters and the st a t i s t i c a l design parameters are inter­
related. For example, static area sampling and aggressive local 
sampling may dictate different s t a t i s t i c a l designs. The volume of 
air sampled—duration multiplied by sampling rate—affects detection 
limits and varia b i l i t y . Characteristics of the area, its size, 
whether i t is one contiguous space or partitioned into unique sec­
tions (rooms), and other distinguishing factors are important. How­
ever, for our current purpose, we have simplified the discussion. 
We consider an area the size of a typical room. We can then focus 
on the generic sampling problem and isolate the relevant s t a t i s t i c a l 
issues· 

A typical measurement may be described as 

Y i j k = InZijk = U + Ti • L j ( i ) • e k ( i j ) ( 1 ) 

where 

^ i j k i - s t n e k1"*1 laboratory analysis taken at the j t n location in the 
i ^ n time period. (Typically Zijk will have units of ng/m-* or 
fibers/m^. The discussion that follows does not depend on the 
choice of units.) 

Ti> L j ( i ) a n c* e k ( i j ) a r e random variables representing the 
contribution of time period, location and£ analytical ̂  error, 
respectively, with zero means and variances σ^, and σ^. The 
model represents a completely nested design. We nave implicitly 
assumed that the measurements have a lognormal distribution. Under 
this assumption the natural logarithm of the analytical measurement 
has a variance that does not vary with its mean and standard 
sta t i s t i c a l tests can be applied. 

The variance of an individual measurement is 

Var(Y. j k) = a* • ol • o\ ( 2 ) 
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The variance of the average taken over laboratory analyses, 
locations, and time is 

Var (Ϋ ...) = σ*/ΐ + o*/IJ + d^/lJK ( 3 ) 

where I , I J , and U K represent the total number of time periods, 
locations and laboratory analyses, respectively. Since the purpose 
of sampling is to determine, as quickly as possible, i f the airborne 
asbestos levels are low enough to release the contractor, we 
restrict the discussion to values of I = 1, that i s , a single time 
interval· 

Sample Allocation for Estimating Concentration Levels. The variable 
cost of a sampling program that produces an estimate with variance 
given in equation (3) is 

C = Cx*J  C *JK (4) 

Ci is the unit cost of
cost. 

The sample size and sample allocation scheme is obtained in one 
of two ways. Either the cost is fixed and the variance of the mean 
is minimized or the variance is fixed and the cost is minimized. 
The f i r s t approach is used when the budget for sampling and analysis 
is determined in advance. The objective in this case is to use that 
budget to obtain an estimate with maximum precision (equivalently 
minimum variance). The second approach is used when the required 
precision of the estimator is specified in advance. Then the objec­
tive is to derive an estimator with the desired level of precision 
at the lowest possible cost. 

Minimum Variance, Fixed Cost. The mathematical problem is 
2 

mm σ_ 
J,Κ L 

min + 
bi 

subject to 

C L J + C 2 J K = C ( 6 ) 

where C is the fixed dollar total available for the sampling and 
laboratory analysis portion of the project. The solution is 

J = c / t i c ^ ) * (a E/o L) + C J 
( 7 ) 

κ = (C!/C2)2 (a E/a L) 
To develop a feeling for the sensitivity of the allocation 

scheme to values of σ̂ , and σ Ε, we have prepared examples that 
reflect passive sampling, followed by TEM analysis. We use values of 
Ci = $20 and C 2 = $500 and evaluate the solution for total budgets 
of $5,000 and $15,000. These figures are based on typical costs for 
TEM analysis. Costs will vary among laboratories and depend on the 
analytical method (TEM, SEM, or PCM) chosen. Note that and 
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are needed to compute the level of precision achieved, namely, (Var 
Y ...) Table I shows results for a L = .25, .5, 1.0, 1.5, and 2.0 
and for σ Ε = 1.0 and 1.5. Results calculated from several studies 
suggest that total variation (σ£ + oj?) ranges between 1.0 and 2.0. 
See (2-4). 

Table I. Solution to the Sample Allocation 
Problem: Minimum Variance, Fixed Cost 

Values of σΕ 
1.0 1.5 

Values Error Error 
of Nominal Bound Actual Bound Actual 
aL Cost °E/°L J Κ % Cost aE/°L J Κ % Cost 

.25 5,000 4.00 10 1 89.4 4,950 6.00 5 2 159.9 4,850 
15,000 4.00 29 1 45.5 14,830 6.00 15 2 73.6 15,050 

.50 5,000 2.00 10 1 100.0 4,950 3.00 10 1 166.4 4,950 
15,000 2.00 29 1 50.2 14,830 3.00 29 1 77.8 14,830 

1.00 5,000 1.00 10 1 140.3 4,950 1.50 10 1 205.7 4,950 
15,000 1.00 29 1 67.3 14,830 1.50 29 1 92.7 14,830 

1.50 5,000 0.67 10 1 205.7 4,950 1.00 10 1 272.4 4,950 
15,000 0.67 29 1 92.7 14,830 1.00 29 1 116.4 14,830 

2.0 5,000 0.50 10 1 299.8 4,950 0.75 10 1 370.9 4,950 
15,000 0.50 29 1 125.6 14,830 0.75 29 1 148.4 14,830 

Solutions to Equations 7 produce solutions for Κ and J that are 
not whole numbers. To resolve this problem, we increase Κ to the 
next integer value and choose J so the cost constraint is exceeded 
by the smallest amount possible. 

For the majority of cases in the table, only one laboratory 
analysis of the f i l t e r is required, Κ = 1. This happens because the 
cost of analysis is large relative to the cost of collecting an add­
itional sample. The value of Κ will be larger than 1 i f the 
analytical variation, σ Ε, is larger than the spatial variation, σ^, 
by enough to overcome cost disparity. For our example, the ratio of 
σ Ε to Q L must be greater than 5 to cause Κ to be greater than 1. 

Although the values obtained for J and Κ minimize the variance, 
we gain more insight into the meaning of the numbers in Table I by 
describing them in terms of an error bound for estimating asbestos 
level. A 95% confidence interval for the mean of the log-
transformed data is Y + 1.96 SD(Y). In terms of untransformed data 
the confidence bounds are exp(Y - 1.96 SD(Y)), exp(Y + 1.96 SD(Y)). 
These limits determine a confidence interval for the median of the 
untransformed data. The error bound is calculated as 
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.l.geSDCY).! ( 8) 

F o r t h e c a s e σ Ε = 1.0, = .25 and C = $5,000, t h e u p p e r e r r o r 
bound i s 89.4 p e r c e n t . 

T h i s r e s u l t means we h a v e c o n f i d e n c e l e v e l o f .95 t h a t t h e a c t u a l 
a s b e s t o s l e v e l w i l l be no g r e a t e r t h a n 89.4 p e r c e n t h i g h e r t h a n t h e 
e s t i m a t e d l e v e l . F o r t h e same v a l u e s o f σ Ε and σ̂ ,, i n c r e a s i n g t h e 
b u d g e t t o $15,250 y i e l d s an u p p e r bound o f 45.5 p e r c e n t . T h a t i s , 
an i n c r e a s e i n t h e b u d g e t by a f a c t o r o f 3 c a n a c h i e v e a r e d u c t i o n 
i n e s t i m a t i o n e r r o r by a p p r o x i m a t e l y a f a c t o r o f 2. A f a i r l y r e a l ­
i s t i c bu t c o n s e r v a t i v e c a s e may be σ Ε = = 1.0· I n t h i s c a s e , f o r 
t h e $5,000 o p t i o n , t h e u p p e r bound i s 140 p e r c e n t a b o v e t h e 
e s t i m a t e d v a l u e . F o r t h e $15,000 o p t i o n , t h e u p p e r bound i s 67 p e r ­
c e n t a b o v e t h e e s t i m a t e d v a l u e . As i n t h e p r e v i o u s c a s e , i n c r e a s i n g 
t h e t e s t i n g budge t by a f a c t o r o f 3 c u t s t h e e s t i m a t i o n e r r o r 
a p p r o x i m a t e l y i n h a l f . 

Min imum C o s t , F i x e d V a r i a n c e . S i n c e o u r i n t e r e s t was f o c u s e d on 
e s t i m a t i o n e r r o r , we may c h o o s e t o s e t t h e e r r o r i n a d v a n c e and 
a l l o c a t e s a m p l i n g and a n a l y s i s r e s o u r c e s t o m i n i m i z e c o s t . The 
m a t h e m a t i c a l p r o b l e m t o be s o l v e d i s 

m i n C , J + C„JK 
(9) 

J , Κ 

s u b j e c t t o 

The s o l u t i o n i s 

2 / T χ 2 /T i r - ν ( 1 0 ) 

J = - ¥ ^ ^ < V c i > 

κ = (c./c,) 2 — 1 2 σ L 

T a b l e I I d i s p l a y s n u m e r i c a l r e s u l t s f o r v a l u e s o f σ Ε = 1.0 and 
1.5 and a L = . 2 5 , . 5 0 , 1 . 0 0 , 1 .50 and 2 . 0 0 . V a l u e s o f J and Κ a r e 
d e t e r m i n e d f o r c o n f i d e n c e i n t e r v a l s w i t h u p p e r e r r o r bound s e t a t 50 
p e r c e n t and 100 p e r c e n t and c o n f i d e n c e c o e f f i c i e n t s a t 95 p e r c e n t 
and 99 p e r c e n t . I n g e n e r a l , t h e t a b l e shows t h a t i t i s v e r y 
e x p e n s i v e t o go f r o m 95 p e r c e n t t o 99 p e r c e n t c o n f i d e n c e . I t i s 
a l s o s i g n i f i c a n t l y more e x p e n s i v e t o o b t a i n an e s t i m a t e w i t h a 50 
p e r c e n t e r r o r t h a n a 100 p e r c e n t e r r o r . F o r e x a m p l e , i f σ Ε = = 
1 . 0 0 , t o be 95 p e r c e n t c e r t a i n t h a t t h e e r r o r i n t h e e s t i m a t e d l e v e l 
o f a i r b o r n e a s b e s t o s i s l e s s t h a n 50 p e r c e n t r e q u i r e s J = 47 and Κ = 
1 a t a c o s t o f $ 2 4 , 4 4 0 . I f a 100 p e r c e n t e r r o r i n t h e e s t i m a t e i s 
a c c e p t a b l e , J i s r e d u c e d t o 1 6 , Κ r e m a i n s a t 1 and t h e c o s t i s 
$ 8 , 3 2 0 . 
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Table I I . Solution to the Sample Allocation Problem: 
Fixed Variance, Minimum Cost 

Nominal 
Error 

% 
Confidence 

% 

Value of eg Nominal 
Error 

% 
Confidence 

% 
1.0 1.5 

Nominal 
Error 

% 
Confidence 

% J Κ Cost J Κ Cost 

$ $ 

.25 50 9
9

100 95 9 1 4,680 10 2 10,200 
99 15 1 7,800 16 2 16,320 

.50 50 95 30 1 15,600 59 1 30,680 
99 51 1 26,520 102 1 53,040 

100 95 10 1 5,200 20 1 10,400 
99 18 1 9,360 35 1 18,200 

1.00 50 95 47 1 24,440 76 1 39,520 
99 81 1 41,120 132 1 68,640 

100 95 16 1 8,320 26 1 13,520 
99 28 1 14,560 46 1 23,920 

1.50 50 95 76 1 39,520 106 1 55,120 
99 132 1 68,640 183 1 95,160 

100 95 26 1 13,520 36 1 18,720 
99 46 1 23,920 63 1 32,760 

2.00 50 95 117 1 60,840 147 1 76,440 
99 203 1 105,560 254 1 132,080 

100 95 40 1 20,800 50 1 26,000 
99 70 1 36,400 87 1 45,240 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



198 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

It should be noted that estimation errors of 50 percent or 100 
percent are not unduly large for airborne asbestos measurements. 
For example, the estimate of a typical ambient concentration level 
may be 2 nanograms per cubic meter. The bounds for a 100 percent 
error would be 1 and 4. Although there is no absolute health 
standard, i t is doubtful i f a change from 2 to 4 would affect a 
decision on whether to release a contractor. That variation would 
be well within the range of values found in the ambient 
distribution. 

Comparing Two Measurements. The previous discussion introduced the 
concepts of sample size and sample allocation for estimating a i r ­
borne concentration levels. We want to apply those concepts to the 
comparison of two measurements, inside a building versus ambient 
levels. 

Let X and Y denote the two measurements. The models are: 
(12) 

(13) 

where X j k and Y j k are the natural logarithms of the k t n laboratory 
analysis taken at the j t h location. Let X and Y represent the aver­
age taken over J locations and Κ laboratory analyses. The 
difference in means, denoted by 

W = y? 
j 

L X «• 

W Y-X, is represented by 
(14) 

j fck(j) c k ( j ) 

with expected value 

E(W) χ 
u = 

(15) 

and variance 

Var (W) = 2 • JK 
(16) 

For illustrative purposes let Κ = 1. Then we must determine the 
sample size, J, that is required to ensure a small probability of 
making an incorrect decision. Two types of error can occur. The 
two concentrations may be different (i.e., δ ^ 0), yet we conclude 
that they are the same (false negative), or the two concentration 
may be the same (i.e., δ = 0) yet we conclude that they are 
different (false positive) (see Table III). In the f i r s t case the 
contractor is released even though the work is unsatisfactory. In 
the second case the area has to be cleaned again even though i t was 
already clean enough. Having specified acceptable rates of false 
negatives and false positives we can calculate the required values 
of J and K, given 0·^ and O g . 
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Table III. The Types of Error that Can Occur and Their 
Probability of Occurrence 

Actual Situation 
Indoor Level 
Less Than or Indoor Level Greater 

Conclusion Equal to Ambient Level Than Ambient Level 

Indoor Level 
Less Than or 
Equal to 
Ambient 
Level 

Indoor Level 
Greater Than 
Ambient Level 

Correct Decision 

Probability = l-Ol 

False Positiv
(Conclud
Clean 1 When It Is) 

Probability = α 

Significance Level 

False Negative 
(Conclude 'Clean' 
When It Is Not) 

Probability = β 

Probability = 1-β 
(Power) 

Table IV gives values of J when the false positive rate is 5 
percent and the false negative rate is either 5 percent or 1 per­
cent. J depends on V and, since Κ = 1, on the sum σ£ + σ§. A 
convenient empirical measure of precision in the original units is 
the coefficient of variation (cv) which is the standard deviation 
divided by the mean. Note that σ£ + σ{? = In (1 + c v 2 ) . An alge­
braic difference, δ, on the logarithmic scale translates into a 
multiplicative difference on the original scale. Table V has been 
prepared using the multiplicative factors. 

For example, i f the coefficient of variation is 2 and the level 
is twice the other then seventy-three samples are required to 
achieve a false negative rate of 5 percent. To achieve a false neg­
ative rate of 1 percent, one hundred and twelve samples would be 
required. As the acceptable difference between levels increase, the 
required number of sample required decreases. When one level is one 
hundred times the other and the coefficient of variation is 1, only 
three samples are required to achieve a false negative rate of 1 
percent. 

So far we have assumed that both air levels would have to be 
determined and therefore that two sets of J samples would have to be 
collected. In some cases one level may already be available from 
other records and can be used as a standard of comparison. Table VI 
shows for this special case how the probability of a false negative 
depends on the number of samples collected. For small differences 
between the measured level and the standard a small sample size has 
an unacceptable high false negative rate. For example, i f the mean 
is five times the standard level and the coefficient of variation is 
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Table IV. Sample Size (Value of J Given Κ = 1) Required 
to Ensure a False Positive Rate of 5 Percent 
and a False Negative Rate of Either 5 Percent 
or 1 Percent When Comparing Two Means 

Difference Between Coefficient of Variation 
Means .75 1 1.5 2 2.5 3 

(A) Probability of False Negative = 5 Percent 

2x 23 35 61 72 108 108 

5x 5 7 12 16 19 23 

lOx 4 5 6 8 10 11 

lOOx 

(B) Probability of False Negative = 1 Percent 

2x 33 50 89 112 112 112 

5x 7 10 17 23 27 33 

lOx 5 6 8 11 14 15 

lOOx 2 3 4 4 5 5 

2 then a sample size of 4 has a false negative rate of 62 percent. 
In other words, the contractor will be released in 62 percent of the 
cases in which the actual level is five times the standard level. 

Summary and Conclusions 

Providing a generally acceptable approach to determining "how clean 
is clean" for asbestos abatement projects is complicated by many 
factors. F i r s t , there is no absolute standard specifying an 
acceptable cutoff point for exposure to airborne asbestos. Second, 
there are a number of competing sampling and analysis protocols that 
have been proposed. None have been fu l l y validated. Finally, data 
from completed studies show that stati s t i c a l sampling and analytic 
variability may each be as large as 100 percent (relative to the 
estimated concentration level). 

However, even against this background of uncertainty and appar­
ent imprecision, in some cases i t is possible to measure airborne 
asbestos with acceptable precision through replication for a 
reasonable price. Since there is no exposure standard, "clean" must 
be defined by comparing indoor and outdoor levels. A s t a t i s t i c a l 
comparison of indoor versus outdoor measurements that is s i g n i f i ­
cantly different from zero indicates that the indoor space is not 
clean. Tests may be designed that either compare the average of 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



15. CHESSONETAL. Measuring Airborne Asbestos Levels 201 

Table V. Probability of Detecting a Difference Between 
a Single Mean and a Standard Level, Given 
Sample Size J 

Actual Mean Coefficient of Variation 
îample Size Relative to Standard .75 1 1.5 2 2.5 3 

J=2 2x .19 .15 .12 .11 .10 .10 
5x .41 .33 .26 .22 .20 .19 
lOx .55 .46 .36 .31 .28 .26 
lOOx .87 .78 .65 .58 .53 .50 

J=3 2x .34 .26 .19 .16 .15 .14 
5x .83 .69 .52 .43 .38 .35 

lOx .97 .90 .75 .65 .58 .53 
lOO

J=4 
5x .97 .89 .73 .62 .55 .50 

lOx 1.00 .99 .93 .86 .79 .74 
lOOx 1.00 1.00 1.00 1.00 1.00 1.00 

J=5 2x .61 .46 .32 .27 .23 .21 
5x 1.00 .97 .86 .75 .68 .62 

lOx 1.00 1.00 .98 .95 .91 .87 
lOOx 1.00 1.00 1.00 1.00 1.00 1.00 

J=10 2x .92 .78 .59 .48 .42 .38 
5x 1.00 1.00 1.00 .98 .95 .93 
lOx 1.00 1.00 1.00 1.00 1.00 1.00 
lOOx 1.00 1.00 1.00 1.00 1.00 1.00 

a set of indoor measurements with the average of a set of outdoor 
measurements or compare the average indoor measurements with a known 
value of the outdoor concentration developed from historical data. 

For the latter case, comparing the average of a set of indoor 
measurements to a known outdoor level, the sample size may be as 
small as five. From Table V, we see that 5 measurements are s u f f i ­
cient to detect a ten fold difference between an indoor average and 
a known outdoor level with a .91 probability when the coefficient of 
variation is 2.5. (Note that i f and σ Ε are both equal to 1, the 
coefficient of variation is approximately 2.5.) 

Larger sample sizes detect smaller differences. For example, 
i f J = 10, a 5 fold difference could be detected with a .95 proba­
b i l i t y ; a 10 fold difference would almost certainly be detected. 
(Refer to Table V). 

Differences that are multiples of 5 or 10 appear to be large. 
However, in the testing problem being considered they may be accept­
able. Ambient outdoor Levels of asbestos tend to be Low, in the 0-5 
ug/m̂  range. A five-foid or even ten-foLd increase produces a Level 
that may s t i l l be considered to be within the acceptable range of 
the typical outdoor level. Therefore, i t may be necessary only to 
be able to identify large differences, larger than 5 or 10 times the 
outdoor level. 
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If the outdoor leveL must be estimated also ( i . e . , h i s t o r i c a l l y 
determined levels are thought to be inadequate), then a larger 
number of samples are required. For a coefficient of variation 
equal to 2.5 and a probability of correctly identifying a 10 fold 
difference of .95, 10 samples are required indoors and 10 are 
required outdoors. (Refer to Table IV). To detect a 5 fold 
increase, a total of 38 samples are required. When both indoor and 
outdoor levels must be determined, the sampling experiment can be 
extremely expensive (recall that TEM analysis is approximately $500 
per sample). 

Reluctance to bear the high cost provides motivation to seek a 
less expensive solution. Three obvious directions are suggested. 
Fir s t , refine both the sampling and analytical protocol to reduce 
variation. Method studies in progress should be pursued rigorously 
to achieve the desired objective. Second, alter the analytical 
protocol to reduce cost. Third, u t i l i z e a sampling plan that is 
midway between treating the outdoor Level as known and treating i t 
as unknown. The use of
only one, combined with
the outdoor level. 

Results on the refinement of protocols for sampling analysis 
are forthcoming in the report on the EPA/NBS workshop on monitoring. 
Additional work on st a t i s t i c a l design is also in progress to find 
practical ways to reduce required sample size which in turn leads to 
reductions in cost and more efficiency in dealing with contractor 
release after abatement. 

Disclaimer 

This document has been reviewed and approved for publication by the 
Office of Toxic Substances, Office of Pesticides & Toxic Substances, 
U.S. Environmental Protection Agency. The use of trade names or 
commercial products does not constitute Agency endorsement or recom­
mendation for use. 
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Estimation of Spatial Patterns and Inventories 
of Environmental Contaminants Using Kriging 

Jeanne C. Simpson 

Pacific Northwest Laboratory, Richland, WA 99352 

Kriging is a relativel
spatial estimation. The kriging estimator is a 
weighted average which is the "best linear unbiased 
estimator." The derivation of the kriging weights 
takes into account the proximity of the observations 
to the point (or area) of interest, the "structure" of 
the observations (the relationship of the squared 
differences between pairs of observations and the 
intervening distance between them) and any systematic 
trend (or drift) in the observations. Additionally, 
kriging provides a variance estimate that can be used 
to construct a confidence interval for the kriging 
estimate. This paper will discuss the assumptions made 
in kriging and the derivation of the kriging estimator 
and variance. The application of kriging is 
demonstrated with lead measurements in soil cores from 
two sites near lead smelters and a third site in a 
control area. 

K r i g i n g ( g e o s t a t i s t i c s ) i s a r e l a t i v e l y new s t a t i s t i c a l approach to 
s p a t i a l e s t i m a t i o n . Much of the e a r l y t h e o r e t i c a l work was done by 
G. Matheron at the P a r i s School of Mines i n the 1960s. The 
development of g e o s t a t i s t i c s was motivated by D. G. Krige and h i s 
e f f o r t s to evaluate the ore i n South A f r i c a n gold mines. To t h i s day 
most of the research i n t o g e o s t a t i s t i c a l methods i s s t i l l aimed a t 
ore and o i l reserve e s t i m a t i o n . However, i n recent years i t s use has 
spread to many other d i s c i p l i n e s i n c l u d i n g s e a - f l o o r mapping (_1), 
hydrologie parameter e s t i m a t i o n (2), ground water s t u d i e s (3>) > 
aquatic monitoring ( 4 J , gene frequency mapping (5j and r a d i o n u c l i d e 
contamination from atmospheric nuclear t e s t s (£-8). 

Assumptions Used i n K r i g i n g 

The e a r l y t h e o r e t i c a l work was done by Matheron (9-11) at the P a r i s 
School of Mines. Journel and H u i j b r e g t s (12), Rendu (13) and David 
(14) have published books which describe the theoreticâT aspects of 
k r i g i n g and the d e r i v a t i o n of the k r i g i n g system of l i n e a r equations. 

0097-6156/85/0292-0203$l 1.00/0 
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Pauncz (15) and B e l l and Reeves (16) have published b i b l i o g r a p h i e s of 
the E n g l i s h language p u b l i c a t i o n s on k r i g i n g . This s e c t i o n w i l l 
d e f i n e some of the common terminology used i n k r i g i n g and give an 
overview of the assumptions made by k r i g i n g . 

Random Functions and Regionalized V a r i a b l e s . In u n i v a r i a t e 
s t a t i s t i c s , an observation y. i s defined as a r e a l i z a t i o n of a random 
v a r i a b l e Y, where Y has a p r o b a b i l i s t i c d i s t r i b u t i o n (e.g., normal, 
lognormal, e x p o n e n t i a l , e t c . ) . This d i s t r i b u t i o n i s g e n e r a l l y 
c h a r a c t e r i z e d by c e r t a i n parameters, such as the mean and va r i a n c e , 
which are assumed to e x i s t but are unknown. Often the goal i s to 
make inferences about these unknown parameters. Consequently, a 
number of r e a l i z a t i o n s , say {y^9 y n } , of t h i s random v a r i a b l e 
are obtained and inferences about the parameters of the d i s t r i b u t i o n 
of the random v a r i a b l e are made using these observations. For 
example, i f we assume that Y has a normal d i s t r i b u t i o n then the mean 

p 
(μ) and variance (σ ) ar

σ • π 1=1 <*ι - ^ 2 

In k r i g i n g , the goal i s to make inferences about some phenomena 
which occurs over a continuous space. This phenomena i s c a l l e d a 
random f u n c t i o n , Z(x.), and i s analogous to the random v a r i a b l e 
described above. The r e g i o n a l i z e d v a r i a b l e (ReV) i s a s i n g l e 
r e a l i z a t i o n of the random f u n c t i o n . In the u n i v a r i a t e s e t t i n g the 
r e a l i z a t i o n was a s i n g l e o b s e r v a t i o n , w h i l e i n the s p a t i a l s e t t i n g of 
k r i g i n g , the ReV i s a set of η observations and i s denoted as 

Ζ(χ.Ί·) = ReV observed a t χ. , i = 1, ..., η 

— i = ^ x i ' y i ^ ' a l o c a t l o n o n a continuous space 
(the space i s two-dimensional i n t h i s case) 

An example of a random f u n c t i o n i s the d i s t r i b u t i o n of lead i n the 
top 5 cm of s o i l w i t h i n a mile radius of a lead smelter. An example 
of a ReV would be the set of measurements obtained from t a k i n g say 
100 core samples around the lead smelter. The important t h i n g to 
remember i s t h a t these 100 measurements c o n s t i t u t e only a s i n g l e 
r e a l i z a t i o n of the random f u n c t i o n . 

Second Order S t a t i o n a r i t y . With only a s i n g l e r e a l i z a t i o n of the 
random f u n c t i o n i t would be impossible to make any meaningful 
inferences about the random f u n c t i o n i f we d i d not make some 
assumptions about i t s s t a t i o n a r i t y . A random f u n c t i o n i s s a i d to be 
s t r i c t l y s t a t i o n a r y i f the j o i n t p r o b a b i l i t y d e n s i t y f u n c t i o n f o r k 
a r b i t r a r y p o i n t s i s i n v a r i a n t under simultaneous t r a n s l a t i o n of a l l 
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these points by any dis t a n c e h_, t h a t i s 

f i Z t X j ) , Z Q ^ ) ) = f t Z i x j + h ) , • · · 9 U\ + h)) 

However, t h i s assumption i s not l i k e l y to hold f o r any r e a l i s t i c 
problem. 

In p r a c t i c e , only the f i r s t two moments of the random f u n c t i o n 
are of i n t e r e s t . The f i r s t order moment i s the expectation (mean) of 
the random f u n c t i o n at an a r b i t r a r y l o c a t i o n x9 which i s defined to 
be 

E[Z(x)] = m(x) 

The second order moment can be expressed e i t h e r i n terms of the 
covariance or the variogram. The covariance of the random f u n c t i o n 
at p o i n t s x^ and _x2

 1 S defined to be 

COVCZÎXj), Z ( x

When x_2 = = the covariance i s simply the variance of the random 
f u n c t i o n a t χ.» t h a t i s 

VAR[Z(x)] = C0V[Z(x), Z ( x ) ] 

= E[{Z(x) - m(x)} 2] 

The semi-variogram i s one-half the expected squared d i f f e r e n c e of an 
increment, [Ζ(χ_Ί) - Z ( ^ 2 ) ] , t h a t i s 

The above n o t a t i o n i s of t e n s i m p l i f i e d by d e f i n i n g ĥ  t o be the 
distance between l o c a t i o n s x^ and x^. Thus, i f 2L2 = x.} + Jl» ^ e n 

C0V(h) = COVCZix^, Z ( x 2 ) ] 

C0V(0) = VAR[Z(x)] 

Y(JI) = Y ( X X ; X 2 ) 

The random f u n c t i o n i s s a i d to be weakly or second order 
s t a t i o n a r y when i t s f i r s t two moments are i n v a r i a n t under 
simultaneous t r a n s l a t i o n by ]κ That i s , f o r every x. and ĥ  

Y ( x l S xg) = \ ECiZtXj) - Z ( x 2 ) ) 2 ] (1) 

and 

E[Z(x)] = E [ Z ( x + h ) ] = m(x) = m < » 

COV(Ji) = E[Z(x + hi) · Z( x ) ] - m2 < -

That i s , the random f u n c t i o n has a constant mean and the covariance 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



206 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

between each p a i r of l o c a t i o n s depends only on the d i s t a n c e , h_s 

between the two observations. This a l s o i m p l i e s t h a t 

VAR[Z(x)] = C0V(0) < oo 

and 2y{h) = VAR[Z(x) - Z(x + h)] 
= C0V(0) - COV(h) 

Thus, i f the assumption of second order s t a t i o n a r i t y holds, then 
s t a t i s t i c a l inferences about the f i r s t two moments become p o s s i b l e 
s i n c e each p a i r of observations t h a t are separated by a distance ]χ 
can be considered a d i f f e r e n t r e a l i z a t i o n of the random f u n c t i o n . 

I n t r i n s i c Hypothesis. The assumption of second order s t a t i o n a r i t y 
assumes t h a t the variance e x i s t s ( i . e . , i t i s not equal to i n f i n i t y ) . 
This assumption i s s t i l l stronger than necessary. A random f u n c t i o n 
i s s a i d to be i n t r i n s i c
when f o r every x. 

E[Z(x)] = m 

and VAR[Z(x + h) - Z ( x ) ] = 2y(h) 

f o r every h. That i s , only the increment [Z(_x + h) - Z(_x)] has to 
have a variance and t h a t variance does not depend on the l o c a t i o n of 
x.. 

To use what i s termed simple k r i g i n g , only the assumption that 
the random f u n c t i o n i s i n t r i n s i c needs to be made. The problem with 
t h i s assumption i s t h a t the expected value of the phenomena of 
i n t e r e s t i s r a r e l y a constant. For example, the expected 
concentration of lead i n the s o i l around a smelter would decrease as 
the d i s t a n c e from the smelter increased. I f t h i s decrease (or trend) 
i s gradual enough, i t i s o f t e n assumed tha t w i t h i n a l i m i t e d 
neighborhood the random f u n c t i o n has a " l o c a l s t a t i o n a r i t y " and then 
simple k r i g i n g i s used, s i n c e g e n e r a l l y only the observations w i t h i n 
the l i m i t e d neighborhood are used i n the e s t i m a t i o n process. 

I n t r i n s i c Random Function of Order K. When the expected value of the 
random f u n c t i o n cannot be assumed to be a constant, even w i t h i n a 
l i m i t e d neighborhood, then the random f u n c t i o n i s assumed to be the 
sum of two terms. That i s , 

Z(x) = m(x) + Y(x) 

where Y(x.) i s an i n t r i n s i c random f u n c t i o n as described p r e v i o u s l y 
and m(xj i s a d e t e r m i n i s t i c component, which i s r e f e r r e d to as the 
d r i f t . Then, 

E[Z(x) - Z(x + h)] = m(x) - m(x + h) 

VAR[Z(x) - Z(x + h)] = VAR[Y(x) - Y(x + h j ] = 2y(h) 

but 2y{h) = E[(Z(x) - Z(x + h ) ) 2 ] - (m(x) - m(x + h ) ) 2 
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Thus, to estimate the variogram, the d r i f t must be known and to 
estimate the d r i f t , the variogram must be known. This leads to 
d i f f i c u l t i e s i n model i d e n t i f i c a t i o n which w i l l be discussed l a t e r . 

A way to avoid some of the d i f f i c u l t i e s mentioned above i s to 
assume that m(x.) can be approximated, w i t h i n a l i m i t e d neighborhood, 
by a slowly varying polynomial of the form 

m(x) 
k 
Σ 

i=0 
(2) 

where a. are constant c o e f f i c i e n t s and the f . are monomials (e.g., i f 
2 2 

x = (x,y) then f Q = 1, ̂  = x, f 2 = y, f 3 = xy, f 4 = χ , f 5 = y , 
etc.) and use the concept of gene r a l i z e d incrementing (17). 
Generalized increments, which are analogous to the d i f f e r e n c i n g 
process used i n time s e r i e s  " f i l t e r out" the d r i f t  For example
the f i r s t order d i f f e r e n c
constant. This i s what
a constant, t h a t i s 

Z(x) = m + Y(x) 

Z(x + h) - Z(x) = m + Y(χ + h) - m - Y(x) = Y(x + h) - Y(x) 

and the d r i f t i s " f i l t e r e d out." When the d r i f t i s l i n e a r , then a 
second order d i f f e r e n c e ( f i r s t order increment) w i l l f i l t e r out the 
d r i f t . Thus, i f _x = ( x , y ) , then 

Z(x) = m(x) + Y(x) = a Q + a ^ + a 2 y + Y(x) 

and Z(x + h) - 2Z(x) + Z(x - h) = Y(x + h) - 2Y(x) + Y(x - h) 

so that the f i r s t order g e n e r a l i z e d increment i s now an i n t r i n s i c 
random f u n c t i o n , and Z(xJ i s termed an i n t r i n s i c random f u n c t i o n of 
order 1 (IRF-1). In g e n e r a l , any sum 

η 
^ λ.Ζ(χ.) where χ. = ( x ^ y ^ 

η η η 
f o r which l λ. = 0 , l λ.χ. = 0 and J X.y. = 0 

i = l 1 1=1 1 1 i = l 1 1 

w i l l f i l t e r out a l i n e a r d r i f t and i s a f i r s t order g e n e r a l i z e d 
increment. Thus the q u a n t i t y 

Z ( - l , 0) + Z ( l , 0) + Z(0, -1) + Z(0, 1) - 4 Z(0, 0) 

i s a l s o a gen e r a l i z e d increment of order 1. A gene r a l i z e d increment 
of order 2 f i l t e r s out a quadratic d r i f t when 
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Π η η 

i = l 1 

0 

Σ V i = 0 and Σ V ? • ο 
1=1 1 1=1 1 1 1=1 

The second order increment i s an i n t r i n s i c random f u n c t i o n of order 
two (IRF-2). 

To use what i s termed u n i v e r s a l k r i g i n g , i t i s assumed that l(x) 
i s an i n t r i n s i c random f u n c t i o n of order k. But the problem of 
i d e n t i f y i n g the d r i f t and the semi-variogram when they are both 
unknown i s s t i l l present. However, Matheron (11) defined a f a m i l y of 
fu n c t i o n s c a l l e d the g e n e r a l i z e d covariance, K^ïï), and the variance 
of the ge n e r a l i z e d increment of order k can be defined i n terms of 
K(h). That i s , 

The advantage of the gen e r a l i z e d covariance i s t h a t i t s 
i d e n t i f i c a t i o n only r e q u i r e s t h a t the order of the d r i f t i s known, 
not the values of the c o e f f i c i e n t s , a... 

Simple k r i g i n g i s a c t u a l l y a subset of u n i v e r s a l k r i g i n g s i n c e 
the assumption t h a t l(x) i s an i n t r i n s i c random f u n c t i o n of order 0 
i s the same as the assumption t h a t Z(_x) i s i n t r i n s i c . A d d i t i o n a l l y , 
when l(x) i s i n t r i n s i c , the g e n e r a l i z e d covariance and the 
semi-variogram are r e l a t e d as f o l l o w s : 

K r i g i n g System of Lin e a r Equations 

In the previous s e c t i o n , an overview of the k r i g i n g assumptions was 
given. When these assumptions are accepted, a k r i g i n g system of 
l i n e a r equations can be developed. Whether the random f u n c t i o n , 
Z ( x ) , i s i n t r i n s i c (simple k r i g i n g ) or i t i s an i n t r i n s i c random 
f u n c t i o n of order k ( u n i v e r s a l k r i g i n g ) , and whether the semi-
variogram or the ge n e r a l i z e d covariance i s used, the k r i g i n g system 
of l i n e a r equations remains e s s e n t i a l l y the same. A d d i t i o n a l l y , 
whether k r i g i n g i s used to estimate the value of Z(x_) at a point or 
over a given area, the k r i g i n g system of l i n e a r equations s t i l l 
remains e s s e n t i a l l y the same. Thus, i n t h i s s e c t i o n the k r i g i n g 
system of l i n e a r equations, using the semi-variogram, f o r est i m a t i n g 
the average value of l{x) over a given a r e a , when l{x) i s an 
i n t r i n s i c random f u n c t i o n of order 1 ( i . e . , Z(x.) has a l i n e a r d r i f t ) , 
w i l l be demonstrated. The m o d i f i c a t i o n s of t h i s system f o r other 
s i t u a t i o n s w i l l a l s o be described. 

Given a ReV which c o n s i s t s of η obs e r v a t i o n s , 
{ Z ( x ^ ) , Z f x ^ ) } , from an i n t r i n s i c random f u n c t i o n of order k, 
an estimate of a q u a n t i t y Y which i s any l i n e a r f u n c t i o n a l of l(x) i s 
d e s i r e d . The k r i g i n g estimator of Y i s a weighted average of the 

η η
VAR[ l λ. Ζ(χ.)] - Σ Σ λ,λ Κ(χ,; χ.) 

ι = 1 1 1 ι = 1 ι = 1 1 J Ί J 1=1 1 1 i = l j = l 

Y(h) = Κ(0) - K(h) (3) 
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data, i . e 

m 
Y 

i = l 1 1 

(4) 

where λ. the k r i g i n g weights 

I t should be noted t h a t the weighted average i n Equation 4 does 
not n e c e s s a r i l y use a l l of the η observations ( i . e . , m <_ η). For 
example, when Y i s the value of l{x) at a s p e c i f i c l o c a t i o n XQ» then 
g e n e r a l l y only the m observations i n the neighborhood of XQ are used 
i n the weighted average. As the l o c a t i o n of Xq changes, the m 
observations used i n the weighted average a l s o change, si n c e the 
neighborhood has moved. Thus, when m < n, the k r i g i n g estimator of Y 
i s a moving weighted average
i n the best p o s s i b l e way

The k r i g i n g system of l i n e a r equations i s derived so th a t t h e i r 
s o l u t i o n gives k r i g i n g weights such th a t the k r i g i n g estimator i s a 
"best l i n e a r unbiased estimator." The estimator i s l i n e a r because 
the estimator i s a weighted sum. I t i s unbiased because the system 
i s constrained so that E[Y - Y] = 0. I t i s "best" i n the sense th a t 
w i t h i n the c l a s s of a l l unbiased l i n e a r e s t i m a t o r s , i t has the 
s m a l l e s t (minimum) mean square e r r o r . That i s E[(Y - Y) ] i s a 
minimum. Since the estimator i s unbiased the mean square e r r o r of 
the estimator i s an estimate of the variance and i s c a l l e d the 

2 
k r i g i n g v a r i a n c e , o^. 

The most common q u a n t i t i e s which are o f i n t e r e s t are the value 
of Z(x) at a s p e c i f i c l o c a t i o n x^ (p o i n t estimation) and the average 
value of Z(_x) over a s p e c i f i e d area (areal e s t i m a t i o n ) . In the case 
of p o i n t e s t i m a t i o n the q u a n t i t y Y i s simply defined as 

where Β represents a block with an area A. The inventory or t o t a l 
amount of contaminant i n the block can be estimated by using the 
t o t a l amount of contaminant i n a core as the random f u n c t i o n , then 
m u l t i p l y i n g the a r e a l estimate by the area w i t h i n the block d i v i d e d 
by the surface area of the core. In both cases, the k r i g i n g estimate 
i s s t i l l a weighted sum, however the weights and the k r i g i n g variance 
w i l l vary because the q u a n t i t i e s used i n the k r i g i n g system w i l l be 
d i f f e r e n t . 

The k r i g i n g system of l i n e a r equations i s derived by minimizing 
^ 2 

the mean square e r r o r , E[(Y - Y) ] under the unbiasedness c o n s t r a i n t , 

In a r e a l e s t i m a t i o n the q u a n t i t y Y i s defined to be 

Β 
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E[Y - Y] = 0. I t can be shown (see 13) that 

^ Λ m m m 
Ε[(Υ - Υ Π = - I I λ λ γ(χ;χ ) - γ(Β;Β) + 2 I λ 7(χ.;Β) 

i = l j = l 1 J 1 J j = l J J 

where YÎx..-;̂ -) = value of the semi-variogram f o r the d i s t a n c e 
J between x. and x. 

= average semi-variogram between x. and a l l 
J 

the points i n Β 

7 ( B ; B ) = Κ !

= average semi-variogram between any two point s 
x. and χ.1 sweeping independently throughout Β 

For p o i n t e s t i m a t i o n , Β = x^, thus Y ( X . J , B ) = Y ( X . J , X Q ) A N D 

γ ( Β ; Β ) = Y ( X Q , X Q ) = 0 (by the d e f i n i t i o n of the semi-variogram). 
The unbiasedness c o n s t r a i n t , E[Y - Y] = 0, i s s a t i s f i e d when 

f o r t = 0, ..., s 
III 

Σ Vt(2<i) = f t ( B ) 
1 = 1 1 t ι t 

where f t ( B ) = j J f t ( x ) d x 
Β 

and the f t(x.) are the d r i f t monomials i n Equation 2. For poi n t 
e s t i m a t i o n , f t ( B ) = ^ ( X Q ) , thus when Χφ = ( x Q , y Q)> foM = l j 

f l ( X ( ) ) = xo» V - V = y 0 ' f 3 ^ P = x 0 y 0 * e t C e W h e n t h e d r 1 f t 1 s 

constant (simple k r i g i n g ) , s = 0, fgix.^') = ^Q^) = 1 A N C L T ' I E 

c o n s t r a i n t i s 

m 
Σ λ· = ι 

i = l 1 

When the d r i f t i s l i n e a r (Z(x) i s an IRF-1), then s = 2, and 

Tj ( B ) = } J xdxdy = 7 
Β 
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f 2 ( B ) = \ \ ydydx = y 
Β 

and the c o n s t r a i n t s are 

m 
Σ λ

Ί· = ι > Σ V i = χ a n d Σ V i = y 

i = l 1 i = l 1 1 i = l 1 1 

Λ 2 
/\ The minimization of E[(Y - Y) )] with the c o n s t r a i n t 

E[Y - Y] = 0 i s done using s+1 Lagrange m u l t i p l i e r s (μ 0, ..., μ $ ) . 

The r e s u l t i s the f o l l o w i n g k r i g i n g system of l i n e a r equations 

m s _ 
Σ λ.γ(χ.;χ.) + I y t f ( x , ) = Ύ ( Χ , ; Β ) f o r j = 1  m 

i = l J ~ Ί J t=0 z 1

^ V t M i ) = ft(BÎ 

The k r i g i n g variance i s 

m 

f o r t = 0 s 

°î = ï λ,γ(χ.;Β) + l y.f.(B) - γ(Β;Β) 
i = l 1 1 t=0 τ τ 

(6) 

The s o l u t i o n o f t h i s system f o r the k r i g i n g weights, λ., i s best done 
using matrix algebra. When Z(x} i s an IRF-1 defin e 

Y ( x^ 9^_2} · · · 1 x l 

Ύ (2L2 '—2 ̂  " * " 1 x 2 

1 xm ym 
1 1 1 0 0 0 

x l x 2 xm 0 0 0 

y 2 ym 0 0 0 

··· V μ0* μ 1 ' μ 2 ] 

ç." = F i x ^ B ) , γ ( χ 2 ; Β ) , ..., Ύ ( Χ Π | ; Β ) , l , χ, y ] 
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D' = [ Z i x j ) , Z ( x 2 ) , l(xj9 0, 0, 0] 

then the k r i g i n g system i s 

A Β = C 

and the s o l u t i o n of t h i s system f o r the k r i g i n g weights and Lagrange 
m u l t i p l i e r s i s 

Therefore, the k r i g i n g e s t i m a t o r and variance are 

Υ = Β' D 

o\ = B*C - 7(B;B) 

When the ge n e r a l i z e
semi-variogram, the k r i g i n g system looks almost the same as the one 
above because of the r e l a t i o n s h i p between the ge n e r a l i z e d covariance 
and semi-variogram shown i n Equation 3. Thus, the semi-variogram 
γ(χ.;x.) i s replaced by K(x.;x.) i n matrix A and γ(χ,· ;B) i s replaced 

* j • j * 
by K(_x..;B) i n vector V , and the k r i g i n g variance i s now 

oZ

k = K(B;B) - B'C 

Model Estimation 

As seen i n Equation 4, the k r i g i n g estimator of the value of Z(>0 at 
a s p e c i f i c l o c a t i o n or the average value of Z(x.) over a s p e c i f i e d 
area i s a weighted average of the data. The k r i g i n g weights used i n 
the weighted average and the k r i g i n g variance are obtained from 
s o l v i n g the k r i g i n g system of l i n e a r equations as shown i n 
Equation 5. When the model ( i . e . , d r i f t and semi-variogram or 
gen e r a l i z e d covariance) i s known, the k r i g i n g estimator i s a best 
l i n e a r unbiased estimator (BLUE). However, the model i s g e n e r a l l y 
unknown and thus must be estimated using the observations. I f the 
model i s not i d e n t i f i e d c o r r e c t l y , the k r i g i n g e s t i m a t o r i s no longer 
BLUE. In t h i s s e c t i o n the es t i m a t i o n of the model i s described. 

Semi-variogram Models. The semi-variogram i s a f u n c t i o n of dista n c e 
(h ) . That i s , the semi-variogram a t h i s one h a l f the expected 
squared d i f f e r e n c e between a p a i r of observations Z(x) t h a t are 
separated by a dis t a n c e h (see Equation 1). This f u n c t i o n (or model) 
must be c o n d i t i o n a l l y p o s i t i v e d e f i n i t e so th a t the variance of the 
l i n e a r f u n c t i o n a l of Ζ(χ,) i s greater than or equal to zero. Five of 
the common semi-variogram models which s a t i s f y t h i s c o n d i t i o n are: 

1. Power Function (Figure l a ) 

y(h) = b|h| p with 0 < ρ < 2 

(when ρ = 1, the semi-variogram i s a l i n e a r model) 
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2. Spheri c a l Model (Figure l b ) 

Y(h) = C [ | M - f o r |h| < a 
a 

y(h) = C f o r |h| > a 

'a 1 equals the range of the semi-variogram and C equals the 
s i l l . The range can be thought of as the "zone of i n f l u e n c e . " 
I f the di s t a n c e between two points i s l e s s than the range, then 
the value a t one po i n t i s c o r r e l a t e d with the value a t the other 
p o i n t . I f the dis t a n c e between two points i s greater than the 
range, then the points are independent. The s i l l i s the bound 
on the semi-variogram and provides an estimate of the o v e r a l l 
v a r i a b i l i t y . When a semi-variogram i s bounded then the random 
f u n c t i o n i s second order s t a t i o n a r y and 

C0V[Z(x + h )

When |hj > a 

C0V[Z(x + h ) , Z ( x ) ] = 0 

Y(h) = C 

and thus 

VAR[Z(x)] = C 

3. Cubic Model (Figure l c ) 

y[h) = C f o r |h| > a 

4. Exponential Model (Figure Id) 

Y(h) = C [ l - i | h | / a ] 

(the range of the semi-variogram i s approximately 3a) 

5. Gaussian Model (Figure l e ) 

y(h) = C [ l - e " ( h / a ) ] 

(the range of the semi-variogram i s approximately 2a) 

When h i s set to zero, γ(0) must a l s o be equal to zero. 
However, i f the d i f f e r e n c e [ Z ( x j - Z(_x')] does not tend to z e r o , f o r 
measurements taken at a r b i t r a r i l y c l o s e points x. and _x 1, then there 
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Figure 1. Common semi-varioaram models: (a) power f u n c t i o n , 
(b) s p h e r i c a l , (c) c u b i c , (d; e x p o n e n t i a l , (e) Gaussian and 
( f ) l i n e a r with a nugget. 
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i s a d i s c o n t i n u i t y of the semi-variogram a t the o r i g i n . This 
d i s c o n t i n u i t y i s c a l l e d the nugget e f f e c t . I f there i s a nugget 
e f f e c t , the semi-variogram model i s adjusted to take i t i n t o account. 
For example i f the model i s l i n e a r with a nugget of s i z e Κ 
(Figure I f ) then 

y(h) = b|h| + Κ f o r |h| > 0 
y(h) = 0 f o r |h| = 0 

Estimation of the Semi-variogram When the D r i f t i s Constant. In 
p r a c t i c e , the semi-variogram a t each d i s t a n c e h i s estimated as 
fol1ows: 

1 N i h ) 2 
Y ( h ) = 2NlhT [ Z ( ^ i " Z ( * i ) ] ( 7 ) 

where N(h) i s the numbe
a c t u a l l y taken i n t o the sum. Then one of the above common models i s 
f i t t e d to the estimates o f the semi-variogram a t each h. Us u a l l y 
y(h) f o r each h i s based on a range of d i s t a n c e s , s i n c e i n s u f f i c i e n t 
data e x i s t s f o r a s p e c i f i c d i s t a n c e h. 

Once y(h) has been estimated, the c o r r e c t semi-variogram model, 
u s u a l l y one o f the f i v e models discussed above, has to be s e l e c t e d 
and the parameters of the model need to be estimated. Most model 
f i t t i n g i s done by " t r i a l and e r r o r . " G e n e r ally the appropriate 
model can be chosen v i s u a l l y . For example, i f the variogram has a 
sigmoid shape, then e i t h e r the cubic o r Gaussian model i s 
appropr i a t e . To d i s t i n g u i s h between these two models, note t h a t the 
r e l a t i o n s h i p between the s i l l and range are d i f f e r e n t : f o r the cubic 
model, y ( l/3a) = 0.47C, w h i l e f o r the Gaussian model, y ( l/3a) = 
0.36C. The es t i m a t i o n of the parameters (the s i l l and range) f o r a 
given semi-variogram model i s again governed by the r e l a t i o n s h i p 
between these parameters. Once the model i s chosen and the s i l l i s 
estimated, then the range i s s e t . The estimate of the s i l l and range 
can be adjusted to some extent to improve the " f i t " of the model. 
However, i t should be noted th a t " s m a l l " changes i n the parameters of 
the semi-variogram model do not make a s i g n i f i c a n t d i f f e r e n c e i n the 
k r i g i n g weights and variance which are c a l c u l a t e d by s o l v i n g the 
k r i g i n g system of l i n e a r equations. Thus, t h i s procedure seems to be 
no worse than any other technique. 

Estimation of the Semi-variogram When the D r i f t i s Not Constant. 
When a non-constant d r i f t i s present, the es t i m a t i o n of the 
semi-variogram model i s confounded wi t h the es t i m a t i o n of the d r i f t . 
That i s , to f i n d the optimal estimator of the semi-variogram, i t i s 
necessary to know the d r i f t f u n c t i o n , but i t i s unknown. David (14) 
recommended an estimator of the d r i f t , m*(iO> derived from 
least-square methods of trend surface a n a l y s i s (18). Then a t every 
data point a r e s i d u a l i s given by 

Y*(x) = Z(x) - m*(x) 
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An experimental variogram of estimated r e s i d u a l s y*(h) can then be 
c a l c u l a t e d . However, t h i s variogram d i f f e r s from the underlying 
variogram of the true r e s i d u a l s , y ( h ) , and the bi a s i s a f u n c t i o n of 
the form of the estimator m*(_x). In order to f i n d y(h) from y * ( h ) , 
Y*(h) i s g r a p h i c a l l y compared with a set of yg(h) defined from 
various types of variograms "ÏQW and the same type of estimator 
m*(_x). I f the f i t i s "reasonable" (there i s no t e s t f o r the goodness 
of f i t ) , the model y(h) i s assumed c o r r e c t . I f the f i t i s not 
"reasonable" the process s t a r t s again with a new estimator of the 
d r i f t . 

Neuman and Jacobson (19) have developed a step-wise i t e r a t i v e 
r e g r e s s i o n process f o r simultaneously e s t i m a t i n g the glob a l d r i f t and 
re s i d u a l semi-variogram. Estimates of the f u n c t i o n are obtained by 
s o l v i n g a modified set of simple k r i g i n g equations w r i t t e n f o r the 
r e s i d u a l s . The m o d i f i c a t i o n s c o n s i s t of r e p l a c i n g the true 
semi-variogram i n the k r i g i n g equations by the semi-variogram of the 
r e s i d u a l estimates as obtaine

Generalized Covariance Models. When Z(_x) i s an i n t r i n s i c random 
f u n c t i o n of order k, an a l t e r n a t i v e to the semi-variogram i s the 
gen e r a l i z e d covariance (GC) f u n c t i o n of order k. L i k e the 
semi-variogram model, the GC model must be a c o n d i t i o n a l l y p o s i t i v e 
d e f i n i t e f u n c t i o n so that the variance of the l i n e a r f u n c t i o n a l of 
Z(x_) i s greater than or equal to zero. The f a m i l y of polynomial GC 
fun c t i o n s s a t i s f y t h i s requirement. The polynomial GC of order k i s 

K(h) = Co - ι ( - i ) V | h | 2 i + 1 

1-0 1 

where C i s the nugget e f f e c t which was described e a r l i e r and 

c _ 1 i f h = 0 
0 " 0 i f h t 0 

When k _< 2 and x. i s two-dimensional, the c o e f f i c i e n t s ou have the 
f o l l o w i n g c o n s t r a i n t s : CXQ >_ 0, α 2 ^_ 0 and 

a l - ^ T ^ t f t ! 

The order of the polynomial GC model i s the same as the order of 
the d r i f t . Thus the a v a i l a b l e models can be summarized as f o l l o w s : 

DRIFT k POLYNOMIAL GC MODEL 

Constant 0 C6 - a Q|h| 

Linear 1 Co - a Q|h| + a 1 | h | 3 

Quadratic 2 C6 - a Q|h| + a ^ h j 3 - a 2 | h | 5 
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As can be seen above, when the d r i f t i s constant, the GC models are 
q u i t e l i m i t e d ( i . e . , K(h) = Co, K(h) = -a Q|h| o r K(h) = Co - a Q | h | ) . 
Thus, when there i s a constant d r i f t , the semi-variogram models 
should be used instead of GC models. 

Estimation of the Generalized Covariance Model. An alg o r i t h m f o r the 
est i m a t i o n of the order of the d r i f t and the c o e f f i c i e n t of the 
polynomial GC f u n c t i o n has been developed by D e l f i n e r (17). This 
a l g o r i t h m , termed "Automatic S t r u c t u r e I d e n t i f i c a t i o n (7\SI)" i s used 
i n BLUEPACK 3D (a p r o p r i e t a r y computer package s o l d by the P a r i s 
School of Mines) and i s only b r i e f l y described i n the l i t e r a t u r e 
(17). A s i m i l a r a l g orithm has been developed by Hughes and 
Lettenmeier (20), who included the computer programs i n t h e i r 
p u b l i c a t i o n . 

The ASI algorithm i s broken down i n t o three steps. F i r s t the 
order of the d r i f t (k) i s estimated. Then a l l the p o s s i b l e 
polynomial GC models ar
models estimated; k = 1
there are 15 models estimated  (thos
whose parameter estimates do not meet the c o n s t r a i n t s of the 
polynomial GC model) are discarded and the three best models are 
chosen. The t h i r d step compares the remaining models and makes the 
f i n a l choice. 

The ASI method has the advantage of being automated. However, 
t h i s method has i t s problems: the order of the d r i f t tends to be 
underestimated when samples are from a symmetric g r i d (symmetric 
neighborhoods tend to f i l t e r polynomials by i t s e l f ) ; the f i n a l choice 
of the model depends on an ad-hoc d e c i s i o n procedure (there are again 
no goodness of f i t t e s t s ) ; and when the d r i f t i s constant, the only 
model i s l i n e a r w i t h a nugget which i s not a la r g e enough c l a s s of 
models, thus the user needs to go back to the variogram a n a l y s i s 
described e a r l i e r . Probably i t s biggest weakness i s i t s l a c k of 
robustness a g a i n s t v a r i a b l e s t h a t do not well s a t i s f y the i n t r i n s i c 
hypothesis. 

K r i g i n g A n a l y s i s of Lead Measurements i n S o i l Cores 

The lead measurement (Z(x.) = ppm lead i n a s o i l core) are from three 
s i t e s ; RSR and DMC are centered around lead smelters w h i l e REF i s a 
reference or c o n t r o l s i t e . RSR has 208 measurements, DMC has 206 
measurements and REF has 100 measurements. Figures 2 through 4 
d i s p l a y the s p a t i a l d i s t r i b u t i o n of the measurements at RSR, DMC and 
REF, r e s p e c t i v e l y . The d i s t r i b u t i o n of the data f o r a l l three s i t e s 
are skewed to the r i g h t . Therefore, the natural logarithm (LN) of 
the data i s used i n the k r i g i n g a n a l y s i s . 

I t i s assumed tha t the i n t r i n s i c hypothesis holds w i t h i n the 
l i m i t e d neighborhood t h a t i s used i n c a l c u l a t i n g the k r i g i n g 
estimates. That i s , e i g h t measurements w i l l be used by the k r i g i n g 
estimator and w i t h i n the l i m i t e d neighborhood (with a radius of 
approximately 1000 f e e t ) t h a t these measurements occur i t i s assumed 
th a t there i s no d r i f t or systematic trend. 

Semi-variogram E s t i m a t i o n . The f i r s t step i n the k r i g i n g a n a l y s i s i s 
to estimate the semi-variogram f o r each s i t e . The sample 
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16. SIMPSON Estimation of Spatial Patterns 221 

semi-variogram i s very s e n s i t i v e to " o u t l i e r s , " thus to obtain a good 
estimate of the underlying semi-variogram, the data needs to be 
s c r u t i n i z e d and any " o u t l i e r s " removed. 

I t can be seen i n Figures 2 through 4 th a t some of the 
" o u t l i e r s " are easy to spot and g e n e r a l l y the j u s t i f i c a t i o n f o r 
removing them i s evident. For example, the measurements over 10,000 
ppm at DMC was taken near a junk yard. I t can be argued t h a t the 
lead i n t h i s sample was not p r i m a r i l y from the DMC source, but a 
r e s u l t of a source w i t h i n the junk y a r d . A d d i t i o n a l l y , three 
measurements at REF are b a s i c a l l y outside the range of the sampling 
p a t t e r n . Since these three points are a l l w i t h i n approximately a 
fo o t of each other and would be considered as only one measurement i n 
the k r i g i n g a n a l y s i s , they would have l i t t l e impact on the k r i g i n g 
estimates. In the end, 7 " o u t l i e r s " are removed from RSR, 5 
" o u t l i e r s " are removed from DMC and 8 " o u t l i e r s " are removed from 
REF. 

Figures 5 through 7 show the sample semi-variograms f o r each 
s i t e a f t e r the " o u t l i e r s
semi-variograms f o r RS
r e a l i z a t i o n s of the same underlying phenomena. Both s i t e s are i n the 
same general area ( c i t y ) and the v a r i a b l e (lead concentration) i s 
dispersed by the same process (a s m e l t e r ) . Therefore, to get a 
be t t e r estimate of the semi-variogram, the semi-variograms f o r DMC 
and RSR are combined (see Figure 8 ) . 

Among the common semi-variogram models, the exponential model 
best f i t s the sample semi-variograms. Therefore, f o r REF 

y(h) = 0.35[1 - e h / 2 0 0 ] + 0.01 

i s used. For DMC and RSR 

Y(h) « 1.40[1 - e
h / 2 2 0 ° ] + 0.01 

i s used. 

K r i g i n g Estimates and Standard D e v i a t i o n s . The k r i g i n g a n a l y s i s i s 
performed on the natural logarithms of the measurements, the k r i g i n g 
estimator Y.., i s i n l o g s c a l e . EXP[Y..] i s not an unbiased estimate 
of the mean concentration i n the b l o c k , i t i s an estimate of the 
median block value. Rendu (21) shows t h a t the unbiased k r i g i n g 
estimator of the mean concentration i n the o r i g i n a l s c a l e i s 

Y* = EXP[Y L + Σλ.7(χ.;Β) - \ {σ2,_ + γ(Β;Β)}] 
2 

where λ., are the k r i g i n g weights and i s the l o g a r i t h m i c k r i g i n g 
v ariance. 

The k r i g i n g estimates of the mean concentration (ppm lead) over 
a 250 f o o t by 250 f o o t block and the k r i g i n g standard d e v i a t i o n f o r 
each block are shown i n Figures 9 through 14. At RSR and DMC the 
estimated block means are shown f o r blocks whose m u l t i p l i c a t i v e 
k r i g i n g standard d e v i a t i o n was l e s s than 2. (Since the measurements 
are transformed using the natural l o g a r i t h m , the standard d e v i a t i o n s 
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X(feet) 

Figure 14. M u l t i p l i c a t i v e k r i g i n g standard d e v i a t i o n s of the 
mean lead concentration over 250 f t by 250 f t blocks a t REF. 
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are m u l t i p l i c a t i v e when transformed back i n t o the o r i g i n a l s c a l e . ) 
At REF the estimated block means are shown f o r blocks whose 
m u l t i p l i c a t i v e k r i g i n g standard d e v i a t i o n i s l e s s than 1.63. The 
blocks t h a t are not shown were outside the area t h a t was sampled. 

Confidence I n t e r v a l s (or Bands). The 80% confidence i n t e r v a l about 
the true mean f o r each i n d i v i d u a l block i s c a l c u l a t e d . Since the 
k r i g i n g i s done on the natural l o g a r i t h m , the k r i g i n g standard 
d e v i a t i o n i s m u l t i p l i c a t i v e and the 80% confidence i n t e r v a l i s 
approximately 

Y*/EXP[1.2816 σ Μ ] < y < Y*EXP[1.2816 σ Η ] 

The 80% confidence bands f o r a given concentration l e v e l are 
constructed such t h a t a l l the blocks w i t h i n the band are those whose 
80% confidence i n t e r v a l contains the given concentration l e v e l  That 
i s , i f we want to estimat
a l l those blocks whose lowe
c l a s s i f i e d as blocks whose concentrations are g r e a t e r than 250 ppm. 
Those blocks whose upper l i m i t s are l e s s than 250 ppm are c l a s s i f i e d 
as blocks whose concentrations are l e s s than 250 ppm. The blocks 
which are l e f t over, those c o n t a i n i n g 250 ppm i n the 80% confidence 
i n t e r v a l , c o n s t i t u t e the confidence band about the 250 ppm 
concentration l e v e l . Figures 15 through 22 show the 80% confidence 
bands f o r 2500 ppm, 1000 ppm, and 500 ppm concentration l e v e l s f o r 
the RSR and DMC and 500 ppm and 250 ppm concentration l e v e l s f o r REF, 
r e s p e c t i v e l y . 

I n t e r p r e t a t i o n of K r i g i n g R e s u l t s . As seen i n Figures 9 through 22, 
the i n t e r p r e t a t i o n of the k r i g i n g r e s u l t s i s p r i m a r i l y v i s u a l . These 
f i g u r e s a l l o w the viewer to q u i c k l y access the extent of the 
estimated contamination and the v a r i a b i l i t y i n those estimates. 
A d d i t i o n a l l y , these f i g u r e s provide a means of assessing the 
confidence l e v e l of the estimated lead contamination. 

The sampled area (or the area i n which k r i g i n g estimates are 
retained) f o r each s i t e are 

Number of Area 
S i t e Blocks (Acres) 

RSR 1717 2463.556 
DMC 1676 2403.294 
REF 834 1196.625 

where each block was 250 f t by 250 f t (1.435 a c r e s ) . I t can be seen 
i n Figure 13 that 99.28% of the area a t the c o n t r o l s i t e (REF) has 
estimated lead concentrations of l e s s than 250 ppm and 100% of the 
area has estimated lead concentrations of l e s s than 500 ppm. 
A d d i t i o n a l l y , from Figure 21 i t can be seen t h a t , a t the 80% 
confidence l e v e l , 99.64% of the area has estimated lead concentra­
t i o n s of l e s s than 500 ppm. Therefore, with some assurance, i t can 
be s t a t e d t h a t the "background l e v e l " o f lead concentrations i s no 
greater than 50Û ppm. 
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16. SIMPSON Estimation of Spatial Patterns 241 

I t can be seen i n Figure 9 th a t 8.39% of the area (almost 207 
acres) a t RSR i s estimated to have lead concentrations above the 
"background l e v e l . " A d d i t i o n a l l y , from Figure 17 i t can be seen that 
at the 80% confidence l e v e l a t l e a s t 2.39% of the area (almost 59 
acres) i s above the "background l e v e l " and there could be over 20.09% 
of the area (almost 495 acres) above the "background l e v e l . " 

I t can be seen i n Figure 11 that 11.52% of the area (almost 277 
acres) a t DMC i s estimated to be above the "background l e v e l . " 
A d d i t i o n a l l y , from Figure 20 i t can be seen t h a t a t the 80% 
confidence l e v e l a t l e a s t 5.25% of the area (over 126 acres) i s above 
the "background l e v e l " and there could be over 33.37% of the area 
(almost 802 acres) above the "background l e v e l . " 
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17 
Simple Modeling by Chemical Analogy Pattern 
Recognition 

W. J. Dunn III1, Svante Wold2, and D. L. Stalling3 
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Chicago, Chicago, IL 60612 

2Research Group for Chemometrics, Umea University, S901 87 Umea, Sweden 
3Columbia National Fisheries Research Laboratory, U.S. Fish and Wildlife Service, 
Columbia, MO 65201 

The overall objective of the use of pattern recognition 
in environmental problems is to identify, categorize or 
classify samples based on chemical data describing the 
samples. A number of pattern recognition methods are 
available for application to measured chemical data. 
Although these methods can be used to classify single 
compounds or the components of complex mixtures, they 
sometimes differ considerably in the way in which the 
classification rules are derived and applied. The 
SIMCA (Simple Modelling by Chemical Analogy) method is 
unique in having been developed specifically for appli­
cation to chemical data and it has been shown in a 
number of studies to work very well. Its advantages 
are discussed. 

The potential of modern chemical instrumentation to detect and mea­
sure the composition of complex mixtures has made i t necessary to 
consider the use of methods of multivariable data analysis in the 
overall evaluation of environmental measurements. In a number of 
instances, the category (chemical class) of the compound that has 
given rise to a series of signals may be known but the specific entity 
responsible for a given signal may not be. This is true, for example, 
for the polychlorinated biphenyls (PCB's) in which the clean-up pro­
cedure and use of specific detectors eliminates most po s s i b i l i t i e s 
except PCB's. Such hierarchical procedures simplify the problem 
somewhat but i t is s t i l l advantageous to apply data reduction methods 
during the course of the interpretation process. 

A method that has been used with increasing success is the SIMCA 
method of pattern recognition (1). This method is extremely powerful 
when applied to data on complex mixtures, and a number of reports on 
such applications have recently appeared {2, 3, f ) · 

Steps in a Pattern Recognition Study 

Pattern recognition methods are usually applied in discrete steps, 
which are outlined here. It is assumed that the chemical measurements 

0097-6156/ 85/ 0292-0243S06.00/ 0 
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244 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

that characterize the samples in a study are relevant to the formu­
lated problem. 

Steps 

1. Establish training sets. 
2. Derive classification rules. 
3. Select features. 
4. Refine classification rules. 
5. Classify unknowns. 
6. Review results graphically. 

Various methods work in similar ways with regard to some of the 
steps but the methods may differ in very significant and c r i t i c a l ways 
in other steps. In some ways the SIMCA method is unique when viewed 
in the context of these steps. 

Establishment of Trainin
compounds that are to serv
assumed that this set and i t s associated data are representative of 
the class of samples that are to be categorized. 

The process of setting up training sets is somehwat arbitrary in 
the sense that i t is based on the experience and knowledge of the 
person or persons conducting the analysis. This step is not a func­
tion of the method of analysis being used. It is important, however, 
that an analytical chemist who is intimately familiar with the 
instrument and with sample behavior be involved at this point. 

Once the training sets have been established, i t is necessary to 
obtain data on them relevant to classification of subsequent samples. 
These data are the basis of the classification rules to be derived. 
These samples of unknown class assignment are known as the test 
samples or collectively as the test set. The training set(s) and test 
set are tabulated with their data, as in Figure 1. 

In matrix notation, the data describing the samples can be ex­
pressed as a vector, as the Equation (1), and each sample, is then 

represented as a point in p_-dimensional space. When the data for the 
training sets are projected into variable space, the classes, ideally 
cluster as in Figure 2. 

Derivation of Classification Rules 

Up to this point the methods of classification operate in the same 
way. They differ considerably, however, in the way that rules for 
classification are derived. In this regard the various methods are of 
three types: 1) class discrimination or hyperplane methods, 2) dis­
tance methods, and 3) class modeling methods. 

In the class discrimination methods or hyperplane techniques, of 
which linear discriminant analysis and the linear learning machine 
are examples, the equation of a plane or hyperplane is calculated that 
separates one class from another. These methods work well i f prior 
knowledge allows the analyst to assume that the test objects must 

xk • ^ X l ' X2 f X3' X i ·•* XpJ (1) 
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v a r i a b l e 

sample 1 2 ι ρ 

1 x l l x 1 2 X l i 
2 

3 

k x

η 

Figure 1. Data matrix for a pattern recognition study. 

Figure 2. Graphical representation of 2-classes of pattern 
recognition data in 3-dimensions. 
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246 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

belong to one of the two classes. The possibility that the test set 
samples are members of neither of the training sets is not allowed by 
these methods. It is also necessary that the number of objects be 
much greater than the number of variables. 

The distance methods operate differently. The classification of 
a test set member is based on the class assignment of the samples in 
the training set nearest to the unknowns. The type of distance used 
can differ but is usually the Euclidian distance, and the number of 
nearest neighbors is selected in advance. Usually the 3 to 5 nearest 
neighbors are selected and the possibility that the unknown may not be 
represented in the training sets is allowed. 

Only one class modeling method is commonly applied to analytical 
data and this is the SIMCA method (1) of pattern recognition. In this 
method the class structure (cluster) is approximated by a point, 
line, plane, or hyperplane. Distances around these geometric func­
tions can be used to define volumes where the classes are located in 
variable space, and these volumes are the basis for the c l a s s i f i c a ­
tion of unknowns. Thi
beyond class assignmen

The class models are of the form of Equation 2, which i s a 

_ A 
^ · = Χ · + Σ ^ k . + e, . (2) ki ι ^ ka a i ki a—u 

principal components model. For A=0 the samples in a class are 
identical and the class is represented by a point in space; for A=l i t 
is represented by a line, and for A > 2 by a plane or hyperplane. 

The objective of principal components modeling is to approximate 
the systematic class structure by a model of the form of Equation 2. 
This is shown diagramatically below in Equation 3. Here X is the 

(3) 

data matrix for a training set. The vector product of the t's (princ­
ipal components) and b's (loadings), represent the systematic part of 
the matrix and Ε represents the residual matrix. 

In this example, two principal components are a r b i t r a r i l y 
selected. More or fewer may be necessary, and this is a function of a 
predetermined stopping rule for extraction of principal components 
from X. In SIMCA method, a cross validation technique {J) is used. 

SIMCA uses the NIPALS (Nonlinear iterative PArtial Least 
Squares) algorithm for principal component abstraction (6). Due to 
the simplicity of the algorithm and the ease of programming i t for use 
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17. DUNN ET AL. SIMCA Pattern Recognition 247 

on small computers, a short discussion of the NIPALS algorithm is 
presented here. The NIPALS procedure works as in Figure 3. One 
arbitrarily selects a normalized vector b. The product X b' i s a η χ 
1 vector. The product of this vector in transpose with X gives a 1 χ ρ 
vector. Normalized, this vector can be used to update b in the f i r s t 
multiplication. This is continued iteratively u n t i l t and b con­
verge, usually within about 25 interactions. The product t b is 
then substracted from X and the process continued with the matrix Ε 
until a stopping point is reached. This method has the advantage of 
not requiring matrix inversion for calculation of the principal com­
ponents . 

Feature Selection 

Feature selection is the process by which the data or variables impor­
tant for class assignment are determined. In this step of a pattern 
recognition study the various methods differ considerably  In the 
hyperplane methods, the
for the classes, calculat
classification of the training set. In this i n i t i a l phase, generally 
many more variables are included than are necessary. Variables are 
then detected in a stepwise process and a new rule is derived and 
tested. This process is repeated u n t i l a set of variables is obtained 
that w i l l give an acceptable level of classification. 

This approach to feature selection leads to a set of descriptors 
that are optimal for class discrimination. These variables may or may 
not contain information that describes the classes. 

In SIMCA, a class modeling method, a parameter called modeling 
power is used as the basis of feature selection. This variable is 
defined in Equation 4, where S., is the standard deviation of a va r i -

MPOW = 1 - S i/S i (4) 

able after i t is fitted to Equation 2 and S. is the standard devia­
tion before i t is fit t e d to the model. This'parameter is a measure of 
how well the variable contributes to the systematic class structure; 
i t s values are in the range 0 < MPOW < 1. Variables with low MPOW, 
which are considered noise, are deleted; those with high MPOW are 
retained. 

This criterion for selection of features leads to a set of 
descriptors that contain optimal information about class membership 
as opposed to information about class differences. 

Model Refinement 

After the feature selection process has been carried out once by the 
SIMCA method, i t is necessary to refine the model because the model 
may shift slightly. This refining of the model leads to an optimal 
set of descriptors with optimal mathematical structure. 
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Figure 3. NIPALS algorithm for extraction of principal 
components from a data matrix. 
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Classification of Unknowns 

Class assignment, by the methods of classification discussed earlier, 
differs considerably. In the hyperplane methods, a plane or hyper 
plane is calculated that separates each class, and class assignment 
is based on the side of this discriminant plane on which the unknown 
f a l l s . The limitation of this approach i s that i t requires prior 
knowledge (or an assumption) that the unknown be a member of one of 
the classes in the training sets. 

In the distance methods, class assignment is based on the dis­
tance of the unknown to i t s k-nearest neighbors; since the distances 
of the training set objects from each other are known, one can deter­
mine whether an unknown is not a member of the training sets. 

Since SIMCA is a class modeling method, class assignment is 
based on f i t of the unknowns to the class models. This assignment 
allows the classification result that the unknown is none of the 
described classes, and has the advantage of providing the relative 
geometric portion of th
possible to assess or quantitat
variables that are available for the training sets. 

Graphical Presentation of Results 

This aspect of data analysis is somewhat neglected, as i t is associ­
ated more with the interpretation of results than with the analyses. 

It is important to be able to view the structure of the data for 
the classes. This is done in a variety of ways depending on the 
analytical methods. The graphical technique most commonly used is 
that of plotting eigenvectors or principal components. SIMCA uses 
this method and software has been developed for three-dimensional 
color display of principal components data. Other plotting tech­
niques are also used in SIMCA. 

The SIMCA method of pattern recognition i s in a comprehensive 
set of programs for classification, and we have discussed how i t works 
in this regard. Classification problems represent only a few of types 
of problems that can be solved with this approach. 
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18 
A Quality Control Protocol for the Analytical 
Laboratory 

Robert R. Meglen 
Center for Environmental Sciences, University of Colorado at Denver, Denver, CO 80202 

A modified Youden
used to provide continuous analytical performance sur­
veillance. The basic technique described by other workers 
has been extended to fully exploit the graphical iden­
tification of control plot patterns. Seven fundamental 
plot patterns have been identified. Simulated data were 
generated to illustrate the basic patterns in the sys­
tematic error that have been observed in actual 
laboratory situations. Once identified, patterns in the 
quality control plots can be used to assist in the diag­
nosis of a problem. Patterns of behavior in the sys­
tematic error contribution are more frequent and easy to 
diagnose. However, pattern complications in both error 
domains are observed. This paper will describe how pat­
terns in the quality control plots assist interpretation 
of quality control data. 

Analytical chemists performing routine analyses have long recognized 
the need for a method of monitoring the performance of their analyti­
cal procedures. Quality control techniques have varied in sophistica­
tion from simple subjective evaluations by an experienced analyst who 
knows that the results "don't look right" to more rigorous s t a t i s t i ­
cal protocols. Electronics and microprocessor advances have made 
automated instrumentation widely available and have revolutionized 
the modern analytical laboratory. Instrumental advances have made i t 
possible to generate massive quantities of data with minimal operator 
attention in a fraction of the time once required for much smaller 
efforts. In some cases the analyst 1s role has been reduced to feeding 
samples to the instrument and retrieving the fi n a l report from an 
output device. Many instrumental parameters are now under computer 
control and the analyst's interaction with the measurement process i s 
minimized. In this analytical environment the need for a quality 
control program i s especially c r i t i c a l since anomalous instrument 
performance may not be detected before several samples have been 
"analyzed". 

The instrumental revolution has also lead to a data affluence 
previously unrealized. Multielement techniques capable of simul-
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taneous determination of dozens of chemical species has increased the 
analyst's burden to perform determinations previously absent from 
his/her repertoire. The analyst must now validate sample preparation 
techniques for multiple species and maintain performance surveillance 
for a l l species being reported. It may be necessary to maintain 
quality control records for dozens of species. This can now be done 
effic i e n t l y using automatic acquisition of quality control parameters 
and computer generated summaries. By exploiting the advantages of 
automated data acquisition the analyst i s free to devote more time to 
those aspects of chemical analysis that require human intuition, 
experience, and interpretive s k i l l s . 

The analyst's task in ensuring accurate and precise analyses 
should extend beyond the laboratory to the sampling process. It i s 
not unusual for large numbers of samples to be collected by i n ­
dividuals who have l i t t l e or no experience with the d i f f i c u l t i e s that 
attend the selection of representative samples or with the steps 
needed to preserve the sample after collection  Environmental 
samples, for example, hav
are often collected wit
the validity of the fi n a l analytical result. Therefore i t i s essen­
t i a l that the analyst be involved in the design and implementaion of 
the sampling program. An effective quality control scheme should 
include attention to a l l aspects of the system being studied; sam­
pling, sample treatment, sample preparation and analysis. The As­
sociation of O f f i c i a l Analytical Chemists (AOAC) has published a l i s t 
of concerns of the analyst in providing accurate and precise analyses 
(V). They are listed here because they provide a useful background 
for the quality control method that w i l l be described here. 

1. The method of choice must be demonstrated to apply to the 
matrices and concentrations of interest. 

2. C r i t i c a l variables should be determined and the need for controls 
emphasized. 

3. Quality control samples must be identical and homogeneous so that 
the analytical sampling error i s only a negligible fraction of 
the expected analytical error. 

4. If the analyte i s subject to change (bacterial, air oxidation, 
precipitation, adsorption on container, etc.) provisions should 
be made for i t s preservation. 

5. Practice samples (for method validation) of known and declared 
composition should be available. 

While the importance of adequate sampling design cannot be overem­
phasized we w i l l not examine this aspect of quality control here. 
Instead we w i l l examine a few laboratory practices that are important 
to the quality of the laboratory phase of the analytical result. 

Quality Conrol - General Philosophy 

The design of a total quality control protocol i s based upon two 
fundamental components; validation of the method and continuous 
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performance surveillance. The analyst f i r s t prepares a l i s t of can­
didate methods. During the i n i t i a l evaluation procedure samples of 
the matrix of interest and "known" composition are treated according 
to published or established procedures. Methods that provide promis­
ing results are then refined through a method development process 
that adapts the method to particular matrix characteristics. An 
optimized method i s then used to analyze samples of "known" composi­
tion and of a matrix similar to anticipated unknowns. A standard 
reference material (of similar matrix characteristics, i f available) 
is also analyzed to assess the accuracy of the proposed method. Once 
an accurate method has been developed routine analyses are begun. A 
sample of known composition (a quality control sample) and standard 
reference material are periodically analyzed with the routine un­
knowns to ensure that the method's routine application continues to 
provide adequate results. This procedure of re-analyzing a single 
sample provides a time link for accuracy between the method valida­
tion period and routine work. Precision i s assessed by performing 
replicate analyses on bot
results are detected, routin
method development work may be required to improve the procedure. 
Figure 1 illustrates the general scheme that i s common to most 
quality control procedures. The specific protocol presented in this 
paper i s based on this scheme but i t has been modified to enhance the 
ease with which one may assess analytical performance and diagnose 
problems. Since the f i r s t step in any Q.C. process, validation, i s 
the key to overall performance we w i l l briefly examine the procedures 
used to assess accuracy and precision. 

Phase One: Validation, Accuracy, and Precision 

Accuracy i s a measure of how close a measurement i s to the "true" 
value. While i t i s impossible to determine absolute accuracy i t i s 
possible to obtain an accuracy estimate using several techniques. 

Certified Reference Materials. Certified Reference Materials are 
materials whose properties have been guaranteed or certified by 
recognized bodies. The certified analyses of these materials can be 
used as an estimate of the "true" value for assessment of accuracy. 
The United States National Bureau of Standards (NBS) provides an 
inventory of various materials whose compositions (and properties) 
have been measured using definitive and reference methods. These 
materials, Standard Reference Materials (SRM's), when used in con­
junction with reference methods, i.e., one of demonstrated accuracy, 
make i t possible to transfer accuracy between measurement protocols. 

Other classes of reference materials now in existence include 
secondary reference materials. These are materials produced commer­
c i a l l y for reference purposes, but whose guarantee rests soley with 
the producer. "Analyzed" materials such as geological materials 
obtained from the United Staes Geological Survey, represent test 
samples that complement the variety available from the previously 
mentioned sources. However, the "accepted" analyses reported for 
these materials are based upon consensus values obtained from large 
scale interlaboratory collaborative tests (round robins). Analysis of 
these materials can provide a useful means of comparing performance 
with other laboratories, but i t does not ensure accuracy. In addi-
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Figure 1. Diagram showing conventional scheme for linking accuracy 
over time by periodic analysis of reference material. 
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tion, one must be cautious of assessing accuracy by comparing results 
with consensus values because they are often computed incorrectly in 
the literature. The quoted values may be based upon averages of a l l 
methods without regard to systematic bias that characterizes some 
methods of analysis. 

The selection of an appropriate reference material should be 
based upon the availa b i l i t y of a matrix that i s similar to the an­
ticipated routine unknowns. Similarity of chemical matrix and analyte 
concentrations i s particularly important when attempting to assess 
accuracy of a method that requires destructive sample preparation. 

Independent Methods. In the absence of appropriate certified 
reference materials one may have to rely upon in-house materials that 
can be analyzed by independent methods (other than the candidate 
method). These independent methods should include a reference method 
and other methods that u t i l i z e different physical/chemical principles 
for analyte quantification  Reference methods are generally arrived 
at by concensus followin
number of laboratories.
(ASTM) i s one of the largest compilers of reference methods. Addi­
tional information on the use of reference methods may be found in a 
paper by Cali and Reed (_2). 

Collaborative Testing. A second approach to assessing accuracy, 
when no certified reference material i s available, may be used in 
conjunction with analysis by independent methods and in-house 
materials. Sample exhanges with other laboratories can help establish 
the existence or absence of systematic errors in a method. Collabora­
tive tests are most useful in this regard when some of the par­
ticipating laboratories use different sample preparation and quan­
t i f i c a t i o n . The u t i l i t y of independent analysis methods and com­
parisons between destructive and non-destructive analysis i s again 
emphasized here. 

Referee Laboratories and Spike Recovery Testing. Outside 
laboratories, with demonstrated performance records, can be used to 
evaluate the suitab i l i t y of a candidate method when none of the other 
accuracy testing options i s feasible. However, This technique 
provides a very weak form of accuracy assessment. Indeed, i t provides 
a comparability check, not an accuracy measure. Similarly, spike 
recovery tests provide only weak evidence of method accuracy. Quan­
titative spike recovery only indicates that the added form of the 
analyte was recovered. If the added form responds differently toward 
sample preparation or detection the u t i l i t y of spike recovery testing 
remains doubtful. 

Accuracy i s an expensive commodity. It involves exhaustive 
testing of the candidate method. Thorough delineation and careful 
control of analytical variables i s essential to accurate analyses. 
The expenditure of substantial effort in the early stages of method 
development w i l l be more efficient and less embarassing than later 
corrective work. 

Precision i s a measure of the reproducibility of a given result. 
The role of precision in demonstrating a method's accuracy has not 
been addressed. However, a clear understanding of the Q.C. method 
being presented here requires that we briefly examine a few basic 
features of measurement errors. 
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There are two types of errors associated with any chemical 
analysis; systematic (determinate) and random (indeterminate). Inac­
curate results, consistently higher or lower than the "true" value, 
occur when systematic errors are present. Systematic errors tend to 
have the same algebraic sign and usually arise from erroneous 
calibration, intrumental d r i f t , loss of analyte or contamination 
during sample preparation, failure to account for blank or background 
effects, etc. Through adequate testing procedures i t i s possible to 
determine the magnitude and source of this type of error (hence the 
term "determinate error"). The validation phase of methods develop­
ment i s designed to eliminate this source of error. Occasionally 
systematic errors appear after the method has been in use for some 
time. An effective quality control scheme should permit early detec­
tion of systematic error and assist the analyst in diagnosing i t s 
cause. 

Random or indeterminate errors arise from a large number of 
minute variations in materials  equipment  conditions  etc  If thes
factors are truly independen
in small positive or negativ
i t y of occurrence. Very large positive or negative deviations are 
less probable. These errors are inherent in any measurement technique 
that i s based on a continuous interval scale such as; reading peak 
heights or analog meters, determining mass, etc. While careful con­
tr o l of experimental variables can minimize the magnitude of these 
errors, they are always present. These errors define the precision of 
the measurements and establish the detection limit of the procedure. 
While the distribution of these random errors need not be normal, 
normal distributions are observed for most analytical chemistry 
measurements. The derivations that follow are based on the assumption 
of normality. An effective quality control scheme should permit early 
detection of any change in the magnitude of random errors and assist 
in diagnosing i t s cause. 

Phase Two: Surveillance Monitoring 

The second phase of a total quality control scheme continues beyond 
the i n i t i a l validation phase described earlier. It consists of sys­
tematic performance monitoring and provides a time-link to the ac­
curacy established during the validation phase. Quality control 
monitoring requires continuous surveillance to determine the onset of 
systematic errors and the appearance of large random errors that 
affect precision. The a b i l i t y to distinguish between random and 
systematic error contributions to measurements i s an important pre­
requisite to problem diagnosis. The technique described by W. J. 
Youden (3,4) was designed to identify and separate systematic and 
random errors that occur among laboratories participating in inter 
laboratory tests. The method has been modified by King (_5) and ex­
tended by Meglen (6) for use within a single laboratory, intra 
laboratory testing. In this modification the results obtained from 
day-to-day are treated as i f they were obtained in different 
laboratories. Two different plotting techniques are used to monitor 
the analytical performance. Following a brief description of the 
mathematical basis for this approach we w i l l examine several example 
plots. A detailed derivation of the within run and between run 
variances is given in reference 5. 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



256 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

Assume that a single sample i s s p l i t into two portions labeled A 
and B. A quantitative determination of some sample constituent should 
yield the "true" value X plus any systematic and random error con­
tributions. 

A = X + S + R (1) 

Β = X + S + R1 (2) 

Where S i s the systematic error (bearing the same algebraic sign and 
having the same magnitude for each sample), and R and R1 are the 
random errors (bearing potentially different algebraic signs and 
having different magnitudes for each sample). We have assumed that 
the random error contributions for each sample have equal probability 
of being either positive or negative; i.e., they are normally dis­
tributed and independently expressed. The sum of the results obtained 
for both splits w i l l yield a number Τ that has twice the true value 
and twice the systemati

Τ = (A + Β) = 2X + 2S + R + Rf (3) 

Since the random error contributions, R and R*, have identical 
distributions symmetric about zero, and with expectation of zero; an 
average value of T, based on a large number of observations w i l l have 
a very small component from averaging of R and R1. 

When the difference D between the results A and Β is computed 
the systematic errors, which have the same magnitude and sign, w i l l 
cancel. This leaves the difference of the two random error com­
ponents, which do not necessarily cancel for a particular pair. 

D = (A - B) = R - Rf (4) 

By plotting the sum Τ and difference D in time ordered sequence 
the variation of random and systematic errors can be monitored be­
tween analytical runs. 

The procedure used for day-to-day monitoring ut i l i z e s a single 
real sample (usually a composite of previously analyzed samples) 
sp l i t into two aliquots labeled A and B. These samples are carried 
through the analytical procedure together with the unknowns. 

Graphical Display 

The primary purpose of any quality control scheme i s to identify 
("flag") significant performance changes. The two-sample quality 
control scheme described above effectively identifies performance 
changes and permits separation of random and systematic error con­
tributions. It also permits rapid evaluation of a specific analytical 
result relative to previous data. Graphical representation of these 
data provide effective anomaly detection. The quality control scheme 
presented here uses two slightly different plot formats to depict 
performance behavior. 

Youden described a plotting protocol that depicts the relative 
positions of individual runs on two samples. Consider the hypotheti­
cal case where an analytical method has been perfected and no sys-
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tematic error i s present. The determinations on two samples, A and B, 
would then have the following deviations due to inherent random 
error: i.e., both slightly high, both slightly low, and one slightly 
high and one slightly low. 

Sample Sample 
A Β 

+ + 

+ 
+ 

A l l four possibilities would be equally l i k e l y in an accurate method. 
The results from a series of paired determinations on samples A and Β 
may be plotted on two axes. For any given analytical run the result 
of the A determination ma
determination. For a larg
drawn through the average of the Β results; a horizontal line may be 
drawn through the average of the A results. The plot i s thereby 
divided into four quadrants. The quadrants correspond to the four 
outcomes enumerated above; upper right, lower l e f t , upper l e f t , and 
lower right respectively. If the only source of error i s truly random 
a l l four quadrants should be equally populated. (See Figure 2a.) 

To gain further insight regarding the distribution of points on 
this type of plot we shall consider the hypothetical case where no 
random error exists. A l l errors are systematic and each determination 
has associated with i t either a high bias or a low bias. When these 
results are plotted on the quadrant axes the points would l i e in the 
upper right (++) or lower l e f t (—) quadrants. If the systematic 
error for both samples were equal the plotted points would describe a 
straight line with unit slope (45 degrees). See Figure 2b. 

Actual experience shows that random errors can only be mini­
mized, not eliminated; and a quadrant plot would generally appear as 
shown in Figure 2c. Figure 2d shows an ellipse which i s drawn to 
enclose 95% of the results obtained in a hypothetical experiment that 
exhibits minimal random errors and small systematic errors. The 
ellipse's major axis i s equal to two standard deviations (obtained 
from the Total variance; i.e., Between-run). The minor axis i s equal 
to two times the random error standard deviation (obtained from the 
random error component; i.e., Within-run variance). The ci r c l e i s 
drawn to enclose 95% of the random error results. Thus, points found 
in the region between the ci r c l e and the ellipse have a high prob­
ab i l i t y of being the result of systematic error. (Similar e l l i p t i c a l 
patterns would be observed in the absence of systematic errors i f R 
and R1 were bivariate normal with different variances. However, since 
both Q.C. samples, A and B, are the same material, we assume that 
their variances w i l l be equal.) The application of the Youden method 
to intralaboratory evaluation derives i t s u t i l i t y by incorporating 
time as a variable. By connecting the points on a quadrant plot in 
time-ordered sequence i t i s possible to identify time dependent 
variations within the random and systematic error domains. Detailed 
examples and interpretive aids that exploit this feature w i l l be 
provided later. We w i l l refer to this type of plot as Q-plots for the 
remainder of the discussion. 
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A second type of time dependent plot provides complementary 
information for performance evaluation. Results of the determinations 
on A plus Β (Totals, T) and A minus Β (Differences, D) are each 
plotted in time ordered sequence (or linear time scale) to f a c i l i t a t e 
detection of time dependent patterns or trends. When the analytical 
procedure i s under control systematic errors are eliminated and 
random errors are minimized. The resultant Τ versus time plots show a 
linear distribution of points with zero slope. The scatter i s deter­
mined by the magnitude of the nominal precision and does not change 
with time. Similarly the points on plot of D versus time should be 
normally distributed about zero and the dispersion (standard devia­
tion) i s constant with respect to time. Changes in T-plots, in the 
absence of concomitant changes in D-plots, indicate changes in 
analytical procedures that contribute to systematic errors. Changes 
in D-plots imply that controls on the random error sources have 
failed. It i s possible to set s t a t i s t i c a l l y based control limits that 
signal the "out of control" condition and mandate suspension of 
routine analytical work
T, and D-plots i t i s als
nosis. Diagnostic techniques w i l l be discussed later. 

The Quality Control Protocol Design 

The main purposes of a quality control scheme are to provide accuracy 
and precision monitoring. Since accuracy i s established during the 
method development phase, a time link to that process i s essential. 
Long term monitoring i s provided by replicate analyses over the 
duration of the program. Therefore, a sufficient quantity of the 
quality control sample should be available. It should be homogeneous, 
stable, and duplicate the "unknown's" sample matrix. The analyte 
concentrations should also represent the real sample range. This 
ensures that systematic error resulting from sample matrix effects 
w i l l be detected i f control measures f a i l . While SRM's afford the 
advantage of "known" composition, they may not be available in s u f f i ­
cient quantity for long term programs and they are not available in a 
wide variety of matrix types. A homogenized composite of the routine 
samples has the desired representative sample characteristics. 

The Q.C. sample should be stable with respect to physical, 
chemical and biological change. Trace element constituents of aqueous 
samples are susceptible to biological conversion, air oxidation, and 
absorption on container surfaces. Aqueous quality control samples 
that have high concentrations, near saturation, should be protected 
from temperature fluctuations that may cause precipitation and redis­
solution. Caution should be exercised when compositing aqueous 
samples for use as a Q.C. sample since disparate samples may lead to 
chemical reactions that achieve equilibrium slowly. Precipitation of 
analyte may occur over an extended time period. The Q.C. protocol 
described here w i l l detect these Q.C. sample changes i f they occur, 
but i t w i l l not distinguish them from analytical performance or 
instrument changes. 

The ultimate Q.C. protocol should anticipate the potential error 
sources in the whole analytical procedure. Destructive analyses that 
require extensive treatment for sample decomposition can lead to 
large analytical errors. Solid sample fusions and digestions should 
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be monitored. This means that a Q.C. sample should be carried through 
the entire analytical procedure. If instrument performance i s the 
principal concern, a composite of several prepared samples w i l l 
provide a convenient means of monitoring the detection and quan­
ti f i c a t i o n step in the analytical process. Complete segregation of 
error sources requires a multi-level approach to Q.C. protocol 
design. The simplified two sample scheme described here may not be 
sufficient for a l l monitoring purposes. The analyst should examine 
the need for applying an analysis of variance (ANOVA) protocol i f 
multi-level information is desired. 

The two sample quality control protocol described here i s shown 
schematically in Figure 3. The repeated analysis of the A and Β pair 
provides the accuracy time link between method validation and routine 
work. Since A and Β are aliquots of the same sample they provide data 
for computing precision (within and between analytical runs). Addi­
tional real sample replicates may be added at the discretion of the 
analyst. However, the present scheme minimizes the time consuming 
requirement for performin
sample i s truly matrix an
computed from i t s replication w i l l provide a valid estimate of the 
unknown sample1s analytical reproducibility. When significant preci­
sion excursions have been identified from Q.C. plots more extensive 
testing may be indicated. The purpose of the Q.C. procedure i s to 
provide continuous performance monitoring. The u t i l i t y of the Q.C. 
plots for identifcation and diagnosis of analytical problems may be 
exploited only through frequent examination. The results of these 
evaluations f a c i l i t a t e the dynamic interaction between analytical 
methods development and routine work. 

Selecting the placement of Q.C. samples within the anaytical run 
depends upon the purpose of the Q.C. program. While random placement 
i s s t a t i s t i c a l l y justified, i t may not provide sufficient diagnostic 
information. If instrumental d r i f t i s an important concern (as i t i s 
in many automated, operator unattended techniques) the two Q.C. 
samples should be spaced at intervals that are appropriate to detect 
the anticipated d r i f t . Placement near the beginning and end of the 
analytical run has been been beneficial in detecting instrumental 
d r i f t . By bracketing groups of routine samples with Q.C. samples i t 
is easy to identify specific samples that require re-analysis. 

The number of Q.C. pairs relative to the number of routine 
samples also depends upon the judgement of the analyst. Short term 
instrumental fluctuations require frequent use of Q.C. pairs. Practi­
cal considerations such as autosampler capacity and the number of 
samples that an operator can handle affect the Q.C. sampling fre­
quency. An appropriate guideline of one Q.C. pair per twenty routine 
samples has been used effectively in most operations. A separate Q.C. 
sample pair should be included in every "run". ( A "run" may be 
defined as any separate application of the analytical procedure 
characterized by a change in calibration status, operator, reagent 
lot, or instrument operational characteristics; e.g. on-off cycle, 
tuning, cleaning, maintenance, etc.) 

Two aspects of Q.C. sample labelling require discussion. 1) 
Which sample should be "A" and which "B"? 2) Should samples be 
analyzed "blind"? Labelling samples "A" and "B" i s merely an opera­
tional convenience. The labels are only used to prepare Q.C. plots 
and compute sums, differences, and s t a t i s t i c s . If the f i r s t Q.C. 

In Environmental Applications of Chemometrics; Breen, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1985. 



260 ENVIRONMENTAL APPLICATIONS OF CHEMOMETRICS 

a: No systematic errors c: "Real" life 
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Figure 2. Plots showing location of measured values with various 
systematic and random error contributions. 

Figure 3. Schematic diagram showing the use of two Q.C. samples 
for long-term monitoring of systematic errors. 
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sample analyzed i s always "A" and the second i s always "B". i n ­
strumental d r i f t within the analytical run is easily detected. This 
is true because any D-plot should have points normally distributed 
about the difference of zero. Any non-random D-plot distribution may 
be interpreted as within-run (short term) systematic error, i.e. 
d r i f t . The Q-plot w i l l also show the systematic difference between 
the two determinations since the running mean of A 1s and B !s deter­
mines the location of the plot's horizontal and vertical axes. Thus, 
assymetric axis location w i l l reflect systematic bias introduced 
during the run. 

The selection of labelling need not affect the "blind" nature of 
the analysis since Q.C. samples do not have to be identified until 
analyses are completed. Treating the Q.C. samples in "blind" fashion 
i s often important to ensure that they do not receive special treat­
ment. These samples are used as surrogate replicates for real samples 
and are used to evaluate method performance in lieu of routine un­
known sample replicates  Therefore  they must not receive special 
operator attention or handling
be relaxed when sample preparatio
led, or when automated instrument performance i s the sole subject of 
scrutiny. It may be argued that "blind" labelling i s unecessary even 
when the detection device i s under human operator control since any 
attempt to "adjust" the determination of either Q.C. sample to match 
i t s pair mate w i l l be expressed as an anomalous difference D. 

Patterns in the Systematic Error 

Simulated data were generated to ill u s t r a t e the basic patterns in the 
systematic error that have been observed in actual laboratory situa­
tions. The magnitude of the effects have been exaggerated so that the 
essential features of the interpretation may be illustrated. These 
hypothetical data were computer generated such that the "true" value 
of A and Β should be 100 units. The random error contribution was 
generated such that each simulated measurement was taken from a 
normally distributed error population with a standard deviation of 5 
units. Figures 4 through 10 ill u s t r a t e the simplest patterns that are 
commonly observed in the laboratory. Additional combinations (28) of 
patterns in both systematic and random error components described by 
Meglen (6) are not shown here. 

Commentary on Example Plots. The following commentaries describe 
characteristics of typical patterns observed in the laboratory. 

NONE. 
(Figure 4) No systematic error i s present. The only error con­
tribution i s the result of random deviations in the results 
obtained for the two quality control samples, A and B. 

Q Plot: 
The shape of the distribution i s circular with lines of equal 
lengths at random angles. There i s an equal distribution of 
points among the four quadrants. (Normally distributed; dense in 
the center, sparse in the outer region.) No systematic error i s 
detected. 

Τ Plot: 
Spurious high and low points corresponding to small errors in 
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the D plot suggest possible systematic errors. However, this i s 
also consistent with normally distributed errors. 

D Plot: 
Normally distributed random errors are shown with no apparent trend. 

Total RSD = 5.1 % 
Random RSD = 4.8 % 
Systematic RSD = 1.5 % 

FREAKS 
(Figure 5) Systematic error i s present, but i t does not follow a 
simple functional relationship with time. This case i s simulated 
by the occurence of a large systematic error component (greater 
than three standard deviations from the mean) which appears 
without warning. 

Freaks in the Τ charts generally occur simultaneously with 
freaks in the D plots  They are generally caused by sudden 
introduction of bia
analyte, calibratio
ness or failure to control operating parameters. Some freaks are 
to be expected in any stochastic process. However, frequently 
reoccuring anomalies suggest a systematic source for the bias. 
Careful scrutiny of operations often reveals an underlying 
pattern that leads to recurrent freaks (e.g a l l freaks are 
produced by a single operator; or a l l freaks occur on a par­
ticular work day, implying an environmental factor.) 

Q Plot: 
An e l l i p t i c a l distribution indicates that systematic error i s 
detected. Long line segments at 45 degrees deviate from an 
otherwise random direction and equal placement among the four 
quadrants. Anomalous points are well outside of the ellipse in 
the systematic error quadrants. The points are otherwise nor­
mally distributed. 

Τ Plot: 
No systematic pattern appears. Only spurious high and low points 
are seen. 

D Plot: 
An absence of large random error contribution corresponding to 
anomalous points in the Τ plot shows that they are in the sys­
tematic error domain. (This i s more readily seen in the Q plot.) 

Total RSD = 6.7 % 
Random RSD = 3.9 % 
Systematic RSD = 5.5 % 

SHIFT 
(Figure 6) The systematic error contribution obeys a step func­
tion. The absence of any systematic bias during the early time 
period i s followed by a sudden appearance of a large constant 
systematic error (either positive or negative). 

Sudden shifts to lower or higher values in the Τ plot are 
generally operator related. Different operators may use slightly 
different procedures that lead to bias. New reagent lots may 
introduce systematic error through blank contamination or d i f ­
ferent potency. Sudden undocumented environmental events may 
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S · SRMFLE VMJUE5 

SYSTEMATIC ERROR PATTERN s NONE 
RANDOM ERROR PATTERN : NONE 

Figure 4. Example Q.C. plots showing no systematic error pattern. 
See commentary in text. 

SYSTEMATIC ERROR PATTERN s FREAKS 
RANDOM ERROR PATTERN : NONE 

Figure 5. Example Q.C. plots showing the "FREAKS" systematic error 
pattern. See commentary in text. 
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change the operational characteristics of the instrument (physi­
cal abuse or movement of optically sensitive instruments by 
janitorial staff has been encountered in some laboratories.) 

Q Plot: 
The e l l i p t i c a l l y shaped distribution shows that systematic 
errors are detected. Two distributions are seen; each charac­
terized by randomly directed short line segments. One long line 
segment at 45 degrees between systematic error quadrants signals 
the sudden systematic sh i f t . 

Τ Plot: 
Points form a step function with a sudden increase (or 
decrease). 

D Plot: 
No apparent pattern appears, and the points are normally dis­
tributed about zero. 

Total RSD = 8.4 % 
Random RSD = 4.
Systematic RSD = 7.

TREND 
(Figure 7) The systematic error contribution increases or 
decreases monotonically with increasing time. 

Monotonie increases or decreases in the Τ plot are 
generally related to changes in calibration standards, or the 
Q.C. samples themselves. Failure to adequately preserve stored 
standards or samples w i l l lead to this pattern. Slow, constant 
reagent degradation can also produce the TREND pattern. 

Q Plot: 
An e l l i p t i c a l distribution indicates that systematic errors are 
present. Short line segments connect the points. They move 
monotonically from one systematic error quadrant to the other. 
There i s an insufficient density of points in the middle of the 
ellipse and in the random error quadrants for this to be a 
normal distribution of errors. 

Τ Plot: 
The time sequence of points have non-zero slope; i.e., the 
absolute value of Τ changes with increasing time. 

D Plot: 
Points are normally distributed about zero, no pattern appears. 

Total RSD = 12.2 % 
Random RSD = 3.5 % 
Systematic RSD = 11.7 % 

PLATEAU 
(Figure 8) The systematic error contribution increases or 
decreases rapidly with time, but fi n a l l y levels off to a con­
stant value. This behavior i s similar to, but occurs less 
precipitously than, the step function exhibited by the SHIFT. 

Slow change to higher or lower values in the Τ plots, with 
subsequent leveling off to a constant value characterize this 
pattern. This behavior usually suggests the slow attainment of 
an equilibrium value. Inadequately stabilized and equilibrated 
calibration standards or Q.C. samples w i l l lead to this pattern 
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S Y S T E M A T I C E R R O R P A T T E R N : S H I F T 
RANDOM E R R O R P A T T E R N ι NONE 

Figure 6. Example Q.C. plots showing the "SHIFT" systematic error 
pattern. See commentary in text. 

Τ ι A+B P L O T 

S Y S T E M A T I C ERROR P A T T E R N : T R E N D 
RANDOM E R R O R P A T T E R N : NONE 

Figure 7. Example Q.C. plots showing the "TREND" systematic error 
pattern. See commentary in text. 
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in the Τ plot. Such patterns are seldom the result of instrumen­
ta l changes unless the D plot shows a corresponding change in 
magnitude. 

Q Plot: 
An e l l i p t i c a l distribution indicates that systematic errors are 
present. The pattern i s similar to Figure 7, labeled TREND; 
however, the line segments are longer and too many points l i e at 
the ellipse extrema. This indicates two "level" regions in the Τ 
plots (early and late). The time sequence connected points show 
movement from the systematic low quadrant to the systematic high 
quadrant. 

Τ Plot: 
The plot shows a rapid increase followed by a slower upward 
trend which levels off later in the chart. 

D Plot: 
Normally distributed random errors are shown with no apparent 
trend. 

Total RSD = 10.
Random RSD = 6.6 % 
Systematic RSD = 7.8 % 

CYCLE 
(Figure 9) The magnitude of the systematic error contribution 
changes continuously with time, but i t follows a definite cyclic 
pattern that repeats i t s e l f periodically. (This case i s simu­
lated here as a sine wave.) 

Slow periodic variation of the Τ plot are usually the 
result of uncontrolled environmental factors. Seasonal varia­
tions related to poor laboratory temperature control have been 
frequently identified by this pattern. Instruments are seldom 
sensitive to small ambient temperature changes. However, i f an 
instrument i s operating near i t s suggested nominal operating 
temperature; short term excursions from this temperature can 
affect both accuracy and precision. CYCLES in the Τ plots are 
usually accompanied by similar behavior in the D plots. 

Q Plot: 
Systematic error i s evident in the clear e l l i p t i c i t y of the 
distribution. The time ordered sequence shows a non-random 
"walk" between systematic error quadrants. An excursion from one 
systematic quadrant to another and a subsequent return i s evi­
dent. The distribution i s non-normal, with too few points in the 
central region. 

Τ Plot: 
Sinusoidal fluctuation shows clear periodic behavior in the 
systematic error domain. 

D Plot: 
Normal distribution of random errors i s shown. 

Total RSD = 11.8 % 
Random RSD = 4.5 % 
Systematic RSD = 9.8 % 

BUNCHING 
(Figure 10) The systematic error contribution undergoes several 
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Τ : R+B P L O T 
8 1 _ Q ! QUADRANT P L O T 

S Y S T E M A T I C ERROR P A T T E R N : P L A T E A U 
RANDOM E R R O R P A T T E R N ! NONE 

Figure 8. Example Q.C. plots showing the "PLATEAU" systematic 
error pattern. See commentary in text. 

Τ ! A+B P L O T 
Q s QUADRANT P L O T 

S Y S T E M A T I C E R R O R P A T T E R N ι C Y C L E 
RANDOM E R R O R P A T T E R N : NONE 

Figure 9. Example Q.C. plots showing the "CYCLE" systematic error 
pattern. See commentary in text. 
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Τ I fl+B PLOT 
Q s QUADRANT PLOT 

SYSTEMATIC ERROR PATTERN : BUNCHING 
RANDOM ERROR PATTERN ι NONE 

Figure 10. Example Q.C. plots showing the "BUNCHING" systematic 
error pattern. See commentary in text. 
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successive "quantized" magnitude changes. It i s similar to 
several successive SHIFTs. 

The bunching pattern in Τ plots differ from cycles in two 
respects; in bunching, the changes are precipitous, and they do 
not have a characteristic repetition frequency. The sudden 
systematic error shifts are due to apparently random events. 
These events are most commonly associated with calibration 
errors and/or operator technique. Rotation of laboratory person­
nel can produce this pattern i f the individuals follow different 
procedures. Operator related systematic errors can be detected 
by plotting points with separate symbols for different 
operators. Bunching may also appear when reagent lots are 
changed. 

Q Plot: 
The e l l i p t i c a l distribution shows the presence of systematic 
error. Three dense sub-clusters distinguish this behavior from 
TREND. Note the long 45 degree segments along the systematic 
error directions. Bunchin
havior with f a i r l y dens
(Figure 6) i s a special case of bunching, but a SHIFT generally 
exhibits only one step change. True bunching behavior tends to 
reoccur but without the predictable periodicity which charac­
terizes CYCLES. CYCLES do not exhibit the long line segments 
seen in this plot. 

Τ Plot: 
Randomly reoccurring stratification of results about different 
localized means characterize this plot. 

D Plot: 
No apparent patterns appear and a random normal distribution i s 
seen. 

Total RSD = 13.2 % 
Random RSD = 4.2 % 
Systematic RSD = 12.5 % 

Conclusion 

While methods validation and accuracy testing considerations 
presented here have been frequently discussed in the literature, they 
have been included here to emphasize their importance in the design 
of a total quality control protocol. The Youden two sample quality 
control scheme has been adapted for continuous analytical performance 
surveillance. Methods for graphical display of systematic and random 
error patterns have been presented with simulated performance data. 
Daily examination of the T, D, and Q quality control plots may be 
used to assess analytical performance. Once identified, patterns in 
the quality control plots can be used to assist in the diagnosis of a 
problem. Patterns of behavior in the systematic error contribution 
are more frequent and easy to diagnose. However, pattern complica­
tions in both error domains are observed and simultaneous events in 
both Τ and D plots can help to isolate the problems. Point-by-point 
comparisons of Τ and D plots should be made daily (immediately after 
the data are generated). Early detection of abnormal behavior reduces 
the possibility that large numbers of samples w i l l require re-
analysis. 
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Statistical Receptor Models Solved by Partial Least 
Squares 

Ildiko E. Frank1 and Bruce R. Kowalski 
Laboratory for Chemometrics, Department of Chemistry, University of Washington, 
Seattle, WA 98195 

PLS (partial least squares) multiple regression tech­
nique is used to estimate contributions of various 
polluting sources in ambient aerosol composition. The 
characteristics and performance of the PLS method are 
compared to those of chemical mass balance regression 
model (CMB) and target transformation factor analysis 
model (TTFA). Results on the Quail Roost Data, a 
synthetic data set generated as a basis to compare 
various receptor models, is reported. PLS proves to 
be especially useful when the elemental compositions 
of both the polluting sources and the aerosol samples 
are measured with noise and there is a high correlation 
in both blocks. 

In the past few years, PLS, a m u l t i b l o c k , m u l t i v a r i a t e r e g r e s s i o n 
model solved by p a r t i a l l e a s t squares found i t s a p p l i c a t i o n i n 
v a r i o u s f i e l d s of chemistry (1-7). This method can be viewed as an 
extension and g e n e r a l i z a t i o n of other commonly used m u l t i v a r i a t e 
s t a t i s t i c a l techniques, l i k e r e g r e s s i o n solved by l e a s t squares and 
p r i n c i p a l component a n a l y s i s . PLS has s e v e r a l advantages over the 
o r d i n a r y l e a s t squares s o l u t i o n ; t h e r e f o r e , i t becomes more and more 
popular i n s o l v i n g r e g r e s s i o n models i n chemical problems. 

One of the current problems i n environmental chemistry i s how to 
model the ambient ae r o s o l composition, to r e v e a l p o l l u t i n g sources, 
to determine t h e i r c o n t r i b u t i o n to the o v e r a l l a e r o s o l composition. 

In the past few years s e v e r a l receptor models were developed. 
The b a s i c assumption of these receptor models i s that the ambient 
airborne p a r t i c l e concentrations measured at a receptor can be appor­
tioned between s e v e r a l sources. In other words, each chemical 
element concentration at the receptor i s considered as a l i n e a r 
combination of the mass f r a c t i o n of the source c o n t r i b u t i o n s . 

The two most widespread s t a t i s t i c a l receptor models i n the 
l i t e r a t u r e are: r e g r e s s i o n model of chemical mass balance (CMB) (8) 
and t a r g e t transformation f a c t o r a n a l y s i s (TTFA) (9). The questions 
to be answered by the receptor models are: 

1 Current address: Jerll, Inc., Stanford, C A 94305 
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- How many sources are active? 
- What is the chemical profile of these sources? 
- What is the contribution of these profiles? 
In this paper our goal is to introduce the PLS method, to discuss 

i t s properties, to compare i t with the CMB and TTFA models and to 
demonstrate i t s performance on a well known synthetic data set. 

The PLS Method 

The PLS technique gives a stepwise solution for the regression model, 
which converges to the least squares solution. The fi n a l model i s 
the sum of a series of submodels. It can handle multiple response 
variables, highly correlated predictor variables grouped into several 
blocks and underdetermined systems, where the number of samples i s 
less than the number of predictor variables. Our model (not including 
the error terms) i s : 

NX 
y i k - * * ± 1 e 1

l k J = l 1 3 J k k = 1 . . . NY 

where X i s the predictor variable matrix of NSAMP samples and NX 
variables, S is the regression coefficient matrix of NX rows and NY 
columns and Y is the response variable matrix of NSAMP samples and 
NY variables. An extension of this model of several predictor blocks 
also can be solved by PLS (6), (7), but because only the two block 
model w i l l be applied to the receptor model problem, this extension 
is not discussed here. 

The variance in the predictor block i s described by a set of 
latent variables U, which are linear combinations of the predictor 
variables. Similarly V is the latent variable matrix for the 
response block. These equations are called outer relationship 

NX 
u. 0 = Σ χ.. · a. 0 i - 1 . . . NSAMP 

j = 1 NY3 A - 1 . . . NCOMP (2) 
V U = I-i y i k ' \fL 

where NCOMP is the number of the latent variables, which can be 
maximum NX. A and Β are called the weight matrices. The latent 
variables are orthogonal to each other, similar to the principal 
components. To ensure the orthogonality of the latent variables, 
they are calculated from the residual matrices X' and Y1 

x i j = x i j " di ' u u · ca 
y I k = y i k " d l ' \ l ' bMc 

where C and Β (same as the above weight matrix) are the orthogonal 
projections of the X and Y matrices on the submodel dU, respectively. 

The weights A and Β are calculated as correlations between 
the variables of one block and the latent variable of the other 
block in an iterative procedure. The iteration starts with an 
arbitrary latent variable vector of the response block (V). The 

. . . NSAMP 

. . . NX (3) 

. . . NY 

. . . NCOMP 
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result after convergence is independent from the starting point, 
unless one starts orthogonal to the solution, which is very unlikely. 

NSAMP 
aii = [ml

 X i j · Vi£ j " 1· · -NX 
NSAMP 

b u - [ml y i k · u u k • l - · - m ( 4 ) 

This calculation ensures maximum correlation between the latent 
variables of different blocks. The submodel i s : 

ν = d · u i = 1. . .NSAMP 
1X/ * 1X/ I = 1. . .NCOMP (5) 

where cl is called the inner relationship coefficient
The f i n a l model is th

NCOMP 
y i k = Σ d£ Ui£ * b£k 1 - !· · 'NSAMP 

l k Jl-1 36 l X / k = 1. . .NY (6) 

Figure 1 is the summary of the two block PLS algorithm using the 
equation numbers. 

Finally, the regression coefficient matrix S is calculated as 
a function of A, B, C and d. 

NCOMP 
Σ 
£=1 

S - Σ d · Ζ · A · B T (7) 

where Ζ i n i t i a l i z e d as an (NX * NX) identity matrix and in each term 
i s updated as 

Ζ = Ζ - dZ A · C T (8) 

Properties of the PLS method 

PLS gives a parallel solution of regression models for several res­
ponse variables. Handling the response variables together, especially 
in case of highly correlated y !s , stabilizes the solution for the 
regression coefficients, i.e. reduces the variance of the estimates. 

PLS mitigates the colinearity problem (high correlation among 
the predictor variables) by regressing the response variables on 
orthogonal latent variables. In this respect the PLS regression is 
similar to the principal component regression. Increasing the 
number of components (number of latent variables) to the number of 
predictor variables, the PLS solution converges to the least squares 
solution. However, by removing some of the later latent variables, 
which (similar to the principal components) describe only variance 
due to noise, the variance of the regression coefficient estimates 
can be reduced. The f i t of the model becomes worse than that of the 
least squares solution, but the predictive power of the model i s 
enhanced as variance due to random noise is omitted from the model. 
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4 

outer relationship inner relationship outer relationship 

Figure 1. Two block PLS (numbers correspond to the equation 
numbers). 
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PLS (similar to ridge regression) trades bias for variance in case 
of calculating fewer components (latent variables) than the number 
of predictor variables. 

The optimal number of components from the prediction point of 
view can be determined by cross-validation (10). This method com­
pares the predictive power of several models and chooses the opti­
mal one. In our case, the models differ in the number of components. 
The predictive power i s calculated by a leave-one-out technique, so 
that each sample gets predicted once from a model in the calculation 
of which i t did not participate. This technique can also be used to 
determine the number of underlying factors in the predictor matrix, 
although i f the factors are highly correlated, their number w i l l be 
underestimated. In contrast to the least squares solution, PLS can 
estimate the regression coefficients also for underdetermined 
systems. In this case, i t introduces some bias in trade for the 
(infinite) variance of the least squares solution. 

Comparison of PLS with th

The two mostly used s t a t i s t i c a l methods for calculating receptor 
models are: CMB and TTFA. 

The assumption of the CMB method i s , that the mass concentration 
of chemical element i , C^, is a linear combination of the mass 
fractions of the element i from source j , a.. 

J 
C - Σ a..S. i = 1. . .1 (9) 

1 j-1 1 J 3 

The regression coefficients S. are the source contributions, I i s the 
number of chemical elements, i s the number of sources. Note that 
there is only one air sample and I>J has to be true to be able to 
solve the regression by ordinary least squares. There are two prob­
lems. F i r s t , the predictor variables can be highly correlated. 
Therefore, the solution for the regression coefficients, i.e. for the 
source contribution Sj, is unstable (has high variance). Second, the 
predictor variables are not error free. Therefore, their errors also 
have to be included in the model. Solutions often used for the f i r s t 
problem are ridge regression, which introduces bias to decrease the 
variance of the estimated regression coefficients, or principal 
component regression, that performs regression on the orthogonal 
linear combinations of the predictor variables rather thant on the 
variables themselves. The second problem can be solved by the 
effective variance least-squares method, where the samples (chemical 
elements) are weighted by 

W. = (δ* + Σ δ 2 · S?)" 1 (10) 
1 c i j - i a i j J 

Since the weights depend on the source contributions S., to be calcu­
lated, an iterative procedure is necessary. J 

The PLS solution for the CMB model has several advantages. 
Instead of solving for one air sample at a time or for their average, 
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a solution for a l l the samples as a function of time or site can be 
achieved in one step. Therefore, the model can be extended as 

J 
C, = Σ a. . ' s., i = 1. . .1 

1 K j - i ^ k = 1. . .K (11) 

where the columns of S reflect the variance in time or site. Κ is 
the number of air samples. Including a l l the air samples in the 
same model enhances the sta b i l i t y of the estimates. PLS, similar to 
the ridge regression, trades bias for variance. However, deter­
mination of the optimal number of components by cross-validation i s 
more straightforward than the choice of the ridge parameter k. The 
optimal number of PLS components chosen by cross-validation is an 
estimate for the number of the active source profiles. The effective 
variance weight scheme in Equation 10 can be extended to several air 
samples as 

W = (Σ (δ* + Σ δ* · s2 (12) 
1 k-1 ik j-1 a i j J K 

and included to the PLS solution. 
Determination of which potential polluting source i s active i s 

possible by including the sources stepwise and comparing the 
predictive power of the models with different source contributions 
by cross-validation. 

The goal of the TTFA method is to estimate the number of sources, 
to identify them and to calculate their contribution from the ambient 
sample matrix C (chemical component concentrations i measured during 
sampling periods or at sampling sites k) using as l i t t l e a p r i o r i 
information as possible. As a f i r s t step, an eigenvector analysis 
of matrix C is performed. 

C = A1 · S1 (13) 

where A1 i s the eigenvector or loading matrix and Sf i s the score 
matrix. The literature distinguishes Q (correlation between samples) 
and R (correlation between chemical elements) mode factor analysis 
with or without centering (11). 

In R mode the source profile matrix A i s obtained and the source 
contribution matrix S i s calculated from C and A. The Q mode analysis 
gives an opposite solution. 

The number of significant eigenvectors i s the estimate for the 
number of the active sources. However, the eigenvectors are not 
necessarily representative of the source profiles or source 
contributions. They must be linearly combined to form the source 
vectors. This i s done in the second step by target transformation. 

C = Af · R * R""1 · ST (14) 

where R is the rotation matrix. A1 · R is the representation of the 
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source profiles A and R S1 of the source contributions S. R is 
determined by a series of least-squares f i t s of one test profile 
vector at a time on the eigenvector matrix A 1. 

A PLS solution similar to the TTFA approach can be obtained in 
one step when the air sample matrix X is used as predictor matrix 
and the source profile matrix A is used as response matrix. 

Κ 
a.. = Σ c.. * s. . i = 1. . .1 / l c v 13 , , ik kj (15) 

k " A j - 1. . .J 

The number of active sources i s estimated by cross-validation, i.e. 
i t i s the optimal number of PLS components. The latent variables of 
the PLS model would correspond to the eigenvectors of the TTFA model. 
The linear combination of the latent variables in the inner 
relationship gives the estimate for the source profiles. PLS 
calculates the orthogona
one step. Also, i t solve
The effective variance weighting scheme (Equation 12) can be used 
also in this model to down-weight the chemical elements with high 
uncertainties. 

The Quail Roost Data 

A couple of years ago a workshop was organized to compare the 
performance of the various s t a t i s t i c a l methods applied for 
receptor model (12). To create an objective basis for the comparison 
of the different analyses, a synthetic data set was generated 
according to the following equation: 

i = 1. . .20 
j = 1. . . 13 (16) 
k = 1. . .40 

Both the air sample matrix C and the matrix of the potential source 
profiles A were perturbed by measurement error. In Set I only 9 
sources were active, among which there was an unreported source. 
Set II was generated using a l l 13 profiles. These data sets are 
used to illu s t r a t e the performance of the PLS solution. 

In Set I, cross-validation found 6 underlying components, 
instead of the true 9, because of the high correlation among certain 
profiles and one source contribution being below the noise level. 
In Set II the estimate of the number of the active sources i s 11 vs. 
the true 13. Table I contains the estimated source contributions 
by different PLS models. The f i r s t row contains the true values of 
the regression coefficients. The values in the second through f i f t h 
row are the estimates from PLS models: 1) including the average 
of the 40 air samples in the response block, 2) the weighted 
version of 1), 3) including a l l 40 samples in the response block, 
and 4) the weighted version of 3). The negative contributions at 
the f i r s t source are due to the fact that the method i s not 

J 
S±k = \ m l

 ( â i j " e i j > * S j k + e i k 
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constrained so that i t would result only in positive coefficients. 
The estimate of the f i r s t source i s highly biased because i t has 
very small contribution. 

In Table II the sums of squared residuals (RSS) of Set I are 
found calculated by the TTFA type model solved by PLS. A l l 13 
potential profiles were predicted from the 40 air samples, while 
in reality there were only 9 active. The f i r s t row contains the 
RSS1s from PLS models predicting one source profile at a time, the 
second row from the PLS model predicting a l l the source profiles 
simultaneously. From the difference of the RSS1 s between the 
f i r s t nine and the last four profiles i t i s clear that in this 
data set there were only nine sources active. These results are 
intended only to il l u s t r a t e what kind of information i s provided 
by the PLS solution. 

Table I. Estimated source contributions by different PLS models 

true 0.05 1 .3 2. 0 4. 2 4.7 8.0 3 .3 2.4 7. 1 
average -0.30 1 .3 0. 77 4. 7 5.3 7.2 4 .4 3.3 7. 0 
average, weights 0.07 1 .4 2. 5 4. 1 5.3 7.7 3 .4 1.9 7. 2 
a l l 40 -3.6 0 .9 3. 0 5. 1 6.2 7.4 4 .3 1.9 6. 2 
a l l 40, weights -1.1 0 .8 2. 3 5. 0 6.0 7.5 4 .2 2.3 7. 0 

Table II. Sum of squared residuals of the source profiles 
predicted from Set I 

\ sources 
model \ v 1 2 3 4 5 6 7 8 9 10 11 12 13 

one profile 691 150 37 52 99 31 135 91 44 1504 11931 981 1003 
at a time 691 150 37 52 99 31 

a l l 13 profiles 918 181 53 50 90 103 210 40 53 2513 17805 1511 2104 
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Conclusion 

In this paper the PLS method was introduced as a new tool in calcu­
lating s t a t i s t i c a l receptor models. It was compared with the two 
most popular methods currently applied to aerosol data: Chemical 
Mass Balance Model and Target Transformation Factor Analysis. The 
characteristics of the PLS solution were discussed and i t s advantages 
over the other methods were pointed out. PLS is especially useful, 
when both the predictor and response variables are measured with 
noise and there is high correlation in both blocks. It has been 
proved in several other chemical applications, that i t s performance 
is equal to or better than multiple, stepwise, principal component 
and ridge regression. Our goal was to create a basis for i t s 
environmental chemical application. 
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